Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access March 15, 2021

An overview of the natural force density method and its implementation on an efficient parametric computational framework

  • Márcio S. V. de Souza EMAIL logo and Ruy M. O. Pauletti

Abstract

The new paradigms of parametric modelling have been proving promising on the advance of systems for analysis and design of taut (or tensile) structures. With this premise, the presented work consist on the development with a form-finding tool for Computer Aided Design(CAE) and Computer Aided Engineering (CAE) integration using VPL (Visual Programming Language), in the context of parametric modelling. The methods used in the implementation are the Force Density Method (FDM) and the Natural Force Density Method (NFDM), taking advantage of the linear solution approach provided, suitable for fast form-finding computational procedures.

The program is implemented as a Grasshopper plug-in and it is named BATS (Basic Analysis of Taut Structures), which enables parametric definition of boundary conditions for the form-finding. The program structure and benchmarks with other available Grasshopper plug-ins for taut structures form-finding are presented, showing considerably superior performance using BATS.

References

[1] Aldingerm IL. Frei Otto: Heritage and Prospect. Int J Space Struct. 2016;31(1):3. DOI: https://doi.org/10.1177/0266351116649079.10.1177/0266351116649079Search in Google Scholar

[2] Linkwitz K, Schek HJ. Einige Bemerkungen zurBerechnung von vorgespannten Seilnetzkonstruktionen. Ingenieur-archiv. 1971;40(3):145. DOI: https://doi.org/10.1007/BF00532146.10.1007/BF00532146Search in Google Scholar

[3] Pauletti RM. An extension of the force density proce-dure to membrane structures. In: Int Assoc Shell Spatial Struct (IASS) Symp. Beijing, China; 2006.Search in Google Scholar

[4] Pauletti RM, Pimenta PM. The natural force density method for the shape finding of taut structures. Comput Methods Appl Mech Eng. 2008;197(49-50):49–50. DOI: https://doi.org/10.1016/j.cma.2008.05.017.10.1016/j.cma.2008.05.017Search in Google Scholar

[5] Bletzinger KU, Ramm E. General finite element approach to the form finding of tensile structures by the Updated Reference Strategy. Int J Space Struct. 1999;14(2):131. DOI: https://doi.org/10.1260/0266351991494759..10.1260/0266351991494759Search in Google Scholar

[6] Prandini R, Pauletti RM. A comparison of alternative form finding methods in ixCube 4.10 program. In: Int Assoc Shell Spatial Struct (IASS) Symp. Tokyo, Japan; 2016.Search in Google Scholar

[7] Souza MS, Pauletti RM. Parametric design and optimization of shell structures using the Natural Force Density Method. In: Int Assoc Shell Spatial Struct (IASS) Symp. Tokyo, Japan; 2016.Search in Google Scholar

[8] Preisinger C. Linking structure and parametric geometry. Architectural Design. 2013;83(2):110. DOI: https://doi.org/10.1002/ad.1564.10.1002/ad.1564Search in Google Scholar

[9] Bauer AM, et al. Exploring software approaches for the design and simulation of bending active systems. In: Int Assoc Shell Spatial Struct (IASS) Symp. Boston, USA; 2018.Search in Google Scholar

[10] Pini JT, Souza MS. Beaver: A computational parametric approach for conception, analysis and design of timber structures. In: World Conf Timber Eng (WCTE). Santiago, Chile; 2020.Search in Google Scholar

[11] Guirardi D. The dynamic relaxation method applied to the analysis of cable and membrane structures. PhD thesis. University of Săo Paulo; 2011. DOI: https://doi.org/10.11606/T.3.2011.tde-29062012-151842.10.11606/T.3.2011.tde-29062012-151842Search in Google Scholar

[12] Piker D. Kangaroo: Form Finding with Computational. Physics Architectural Design, 2013, 83(2):136. DOI: https://doi.org/10.1002/ad.1569.10.1002/ad.1569Search in Google Scholar

[13] Schek HJ. The force density method for form finding and computation of general networks. Comp Meth Appl Mech Eng. 1974;3(1):115. DOI: https://doi.org/10.1016/0045-7825(74)90045-0.10.1016/0045-7825(74)90045-0Search in Google Scholar

[14] Argyris JH, Dunne PC, Angelopoulos T, Bichat B. Large natural strains and some special diflculties due to non-linearity and incompressibility infinite elements. Comp Meth Appl Mech Eng. 1974;4(2):219. DOI: https://doi.org/10.1016/0045-7825(74)90035-8.10.1016/0045-7825(74)90035-8Search in Google Scholar

[15] Pauletti RMO, Fernandes FL. An outline of the natural force density method and its extension to quadrilateral elements. Int J Solids Struct. 2020;185-186:423. DOI: https://doi.org/10.1016/j.ijsolstr.10.1016/j.ijsolstr.2019.09.003Search in Google Scholar

[16] Gujarathi G, Ma YS. Parametric CAD/CAE integration using a common data model. J Manuf Syst. 2011;30(3):118–32. DOI: https://doi.org/10.1016/j.jmsy.2011.01.002.10.1016/j.jmsy.2011.01.002Search in Google Scholar

[17] McNell, Rhino3D, https://www.rhino3d.com.Search in Google Scholar

[18] Leităo A., Santos L. Lopes J. Programming languages for generative design: A comparative study. Int J Arch Comput. 2012;10(1):139. DOI: https://doi.org/10.1260/1478-0771.10.1.139.10.1260/1478-0771.10.1.139Search in Google Scholar

[19] Souza MSV, Pini JT. Beaver. https://www.food4rhino.com/app/beaver.Search in Google Scholar

[20] Roudsari M, Pak M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In: Proc BS 2013: 13th Conf Int Build Perf Simul Assoc. Chambéry, France; 2013.Search in Google Scholar

[21] Kastner P, Dogan T. A cylindrical meshing methodologyfor annual urban computational fluid dynamics simulations. J Build Perf Simul. 2019;13(1):59. DOI: https://doi.org/10.1080/19401493.2019.1692906.10.1080/19401493.2019.1692906Search in Google Scholar

[22] Cruz AC, Pini JT, Souza MSV. Project and analysis of glued laminated timber using parametric modelling. Barchelor thesis. University of Săo Paulo; 2018 (In Portuguese). DOI: https://doi.org/10.13140/RG.2.2.21317.68323.Search in Google Scholar

[23] Jacob B, Guennebaud G. Eigen. http://eigen.tuxfamily.org.Search in Google Scholar

[24] Guttman A. R-trees: A dynamic index structure for spatial searching. In: Proc ACM SIGMOD Int Conf Manag Data. New York, USA; 1984. DOI: https://doi.org/10.1145/602259.602266.10.1145/602259.602266Search in Google Scholar

[25] Microsoft, DllImportAttribute Class, https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?view=netcore-3.1.Search in Google Scholar

[26] Dhatt G, Touzot G. Lefrançois E. Finite Element Method. John Wiley & Sons, Inc. USA; 2012. DOI: https://doi.org/10.1002/9781118569764.10.1002/9781118569764Search in Google Scholar

[27] Souza D, Pauletti R. Almeida Neto E. Finding minimal surfaces by direct area minimization. IASS-SLTE Int Symp. Acapulco, Mexico; 2008.Search in Google Scholar

[28] Barnes MR. Form-finding and analysis of prestressed nets and membranes. Comp Struct. 1988;30(3):685. DOI: https://doi.org/10.1016/0045-7949(88)90304-5.10.1016/0045-7949(88)90304-5Search in Google Scholar

[29] Pauletti RM, Guirardi D, Adriaenssens S, Rhode-Barbarigos L. An efficient mass-tuning algorithm for the Dynamic Relaxation Method applied to cable and membrane structures. In: VII Int Conf Text Compos Inflat Struct.Barcelona, Spain; 2015.Search in Google Scholar

[30] Goldschmidt C., Determinatio superficiei minimae rotatione curvae data duo puncta jungentis circa datumaxem ortae, Gottingae, Typis Di- eterichianis. 1831. https://hdl.handle.net/2027/hvd.hnym3n.Search in Google Scholar

Received: 2020-09-15
Accepted: 2021-01-03
Published Online: 2021-03-15

© 2020 Márcio S. V. de Souza et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/cls-2021-0005/html
Scroll to top button