Skip to main content
Log in

Multiple Solutions for a Class of Fractional Hamiltonian Systems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we establish two existence theorems for multiple solutions for the following fractional Hamiltonian system

$$\left\{ {\begin{array}{*{20}{c}} {_tD_\infty ^\alpha \left( {_{ - \infty }D_t^\alpha u\left( t \right)} \right) + L\left( t \right)u\left( t \right) = \nabla W\left( {t,u\left( t \right)} \right),} \\ {u \in {H^\alpha }\left( {R,{R^N}} \right),} \\ \end{array}} \right.$$

where α ∈ (1 / 2, 1), t∈ℝ, u= (u 1, …, uN) T∈ ℝN, and L∈C (ℝ, ℝ N 2) is a symmetric and positive definite matrix for all t∈ℝ,W∈ C 1 (ℝ× ℝN×ℝ) and ∇ W is the gradient of W about u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications. Fract. Calc. Appl. Anal. 17, No 2 (2014), 483–498; DOI: 10.2478/s13540-014-0181-5, http://link.springer.com/article/10.2478/s13540-014-0181-5.article/10.2478/s13540-014-0181-5.

    Article  MathSciNet  Google Scholar 

  2. A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, No 4 (1973), 349–381.

    Article  MathSciNet  Google Scholar 

  3. G. Bin, Multiple solutions for a class of fractional boundary value problems. Abstr. Appl. Anal. 2012 (2012), Article ID 468980.

  4. C. Bai, Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem. Abstr. Appl. Anal. 2012 (2012), Article ID 963105.

  5. J. Chen, X. Tang, Infinitely many solutions for a class of fractional boundary value problem. Bull. Malays. Math. Sci. Soc. 36, No 4 (2013), 1083–1097.

    MathSciNet  MATH  Google Scholar 

  6. X. Chang, Ground state solutions of asymptotically linear fractional Schrodinger equations. J. Math. Phys. 54 (2013), Article ID 061504.

  7. X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26 (2013), 479–494.

    Article  MathSciNet  Google Scholar 

  8. W. Dong, J. Xu, Z. Wei, Infinitely many weak solutions for a fractional Schrodinger equation. Boundary Value Problems 2014 (2014), Article ID 159, 14 p.

  9. F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, No 3 (2011), 1181–1199.

    Article  MathSciNet  Google Scholar 

  10. F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, No 4 (2012), Article ID 1250086.

  11. Y. Li, H. Sun, Q. Zhang, Existence of solutions to fractional boundary value problems with a parameter. Electron. J. Diff. Equ. 141 (2013), 1–12.

    MathSciNet  Google Scholar 

  12. Y. Luchko, Maximum principle and its application for the timefractional diffusion equations. Fract. Calc. Appl. Anal. 14, No 1 (2011), 110–124; DOI: 10.2478/s13540-011-0008-6; http://link.springer.com/article/10.2478/s13540-011-0008-6.article/10.2478/s13540-011-0008-6.

    Article  MathSciNet  Google Scholar 

  13. X. Lin, X. Tang, Existence of infinitely many solutions for p-Laplacian equations in RN. Nonlinear Anal. 92, (2013), 72–81.

    Article  MathSciNet  Google Scholar 

  14. Q. Li, H. Su, Z. Wei, Existence of infinitely many large solutions for the nonlinear Schrodinger-Maxwell equations. Nonlinear Anal. 72, No 11 (2010), 4264–4270.

    Article  MathSciNet  Google Scholar 

  15. W. Liu, X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. 39, No 1–2 (2012), 473–487.

    Article  MathSciNet  Google Scholar 

  16. N. Nyamoradi, Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11, No 1 (2014), 75–87.

    Article  MathSciNet  Google Scholar 

  17. J. Sun, H. Chen, J. Nieto, Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. J. Math. Anal. Appl. 373, No 1 (2011), 20–29.

    Article  MathSciNet  Google Scholar 

  18. M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. 3rd Ed., Springer-Verlag, New York (2000).

    MATH  Google Scholar 

  19. C. Torres, Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 5 (2014), 1–10.

    MathSciNet  Google Scholar 

  20. C. Torres, Existence of solution for a class of fractional Hamiltonian systems. arXiv:1212.5811v1.

  21. M. Willem, Minimax Theorems. Birkhauser, Boston (1996).

    Book  Google Scholar 

  22. Y. Ye, C. Tang, Multiple solutions for Kirchhoff-type equations in RN. J. Math. Phys. 54 (2013), Article ID 081508.

  23. Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Methods Appl. Sci. 37, No 13 (2014), 1873–1883.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafa Xu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., O’Regan, D. & Zhang, K. Multiple Solutions for a Class of Fractional Hamiltonian Systems. FCAA 18, 48–63 (2015). https://doi.org/10.1515/fca-2015-0005

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0005

Key Words

Key Words and Phrases

Navigation