Skip to main content
Log in

Fractional derivative anomalous diffusion equation modeling prime number distribution

  • Short Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This study suggests that the power law decay of prime number distribution can be considered a sub-diffusion process, one of typical anomalous diffusions, and could be described by the fractional derivative equation model, whose solution is the statistical density function of Mittag-Leffler distribution. It is observed that the Mittag-Leffler distribution of the fractional derivative diffusion equation agrees well with the prime number distribution and performs far better than the prime number theory. Compared with the Riemann’s method, the fractional diffusion model is less accurate but has clear physical significance and appears more stable. We also find that the Shannon entropies of the Riemann’s description and the fractional diffusion models are both very close to the original entropy of prime numbers. The proposed model appears an attractive physical description of the power law decay of prime number distribution and opens a new methodology in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Bagley, Power law and fractional calculus model of viscoelasticity. AIAA J. 27 (1989), 1412–1417.

    Article  Google Scholar 

  2. A.M. Balk, Anomalous diffusion of a tracer advected by wave turbulence. Phys. Lett. A 279 (2001), 370–378.

    Article  Google Scholar 

  3. L. Bartolo, and L. Lacasa, The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. R. Soc. A 465 (2009), # 2197.

  4. H.M. Bui, and J.P. Keating, On twin primes associated with the Hawkins random sieve. J. Number. Theory 27 (2006), 284–296.

    Article  MathSciNet  Google Scholar 

  5. W.W.L. Chen, Distribution of Prime Numbers. Macquarie University, Sydney (2003).

    Google Scholar 

  6. W. Chen, S. Hu, and H. Sun, A speculative study of anomalous relaxation modeling for the distribution of prime numbers. In: MESA, IEEE/ASME International Conference (2010), 517–521.

    Google Scholar 

  7. W. Chen, H. Sun, X. Zhang, and D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59 (2010), 1754–1758.

    Article  MathSciNet  Google Scholar 

  8. G.H. Cuellar, E.J. Lopez, E.C. Canton, and A.N. Pisarchik, An approach to generate deterministic Brownian motion. Commun. Nonlinear Sci. 19 (2014), 2740–2746.

    Article  MathSciNet  Google Scholar 

  9. A. Fertis, M. Baes, and H.J. Luthi, Robust risk management. Eur. J. Oper. Res. 222 (2012), 663–672.

    Article  MathSciNet  Google Scholar 

  10. D. Goldfeld, The elementary proof of the prime number theorem: An historical perspective. In: Number Theory, New York Seminar (2003), 179–192.

    Google Scholar 

  11. C. Ingo, R.L. Magin, L.C. Perez, W. Triplett, and T.H. Mareci, On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magnet. Reson. Med. 71 (2014), 617–627.

    Article  Google Scholar 

  12. K. Jayakumar, and R.P. Suresh, Mittag-Leffler distributions. J. Ind. Soc. Probab. Statist. 7 (2003), 51–71.

    Google Scholar 

  13. B.L. Lan, and S. Yong, Power spectrum of the difference between the prime-number counting function and Riemann’s function: 1/f2?. Physica A 334 (2004), 477–481.

    Article  MathSciNet  Google Scholar 

  14. Y.J. Liang, and W. Chen, Bridge fatigue life prediction using Mittag- Leffler distribution. Fatigue Fract. Eng. Mater. Struct. 37 (2014), 255–264.

    Article  Google Scholar 

  15. Y. Liang, and W. Chen, Reliability analysis for sluice gate anti-sliding stability using Levy stable distributions. Signal Process. 107 (2015), 425–432.

    Article  Google Scholar 

  16. M.A.S. Lozano, G.J.F. Barbero, and J.N. Salas, Prime numbers, quantum field theory and the Goldbach conjecture. Int. J. Mod. Phys. A 27 No 23 (2012), # 1250136.

    Google Scholar 

  17. F. Mainaridi, and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118 (2000), 283–299.

    Article  MathSciNet  Google Scholar 

  18. R. Metzler, and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  19. D.A. Murio, On the stable numerical evaluation of Caputo fractional derivatives. Comput. Math. Appl. 51 (2006), 1539–1550.

    Article  MathSciNet  Google Scholar 

  20. R.N. Pillai, On Mittag-Leffler functions and related distributions. Ann. Inst. Statist. Math. 42 (1990), 157–161.

    Article  MathSciNet  Google Scholar 

  21. P. Pollack, Revisiting Gauss’ analogue of the prime number theorem for polynomials over a finite field. Finite Fields Th. App. 16 (2010), 290–299.

    Article  MathSciNet  Google Scholar 

  22. M.H. Saeidirad, A. Rohani, and S. Zarifneshat, Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Comput. Electron. Agr. 98 (2013), 1–7.

    Article  Google Scholar 

  23. J. Sherman, M.P. Molloy, and A.L. Burlingame, Why complexity and entropy matter: Information, posttranslational modifications, and assay fidelity. Proteomics 12 (2012), 1147–1150.

    Article  Google Scholar 

  24. M.F. Shlesinger, On the Riemann hypothesis: A fractal random walk approach. Physica A 138 (1986), 310–319.

    Article  MathSciNet  Google Scholar 

  25. H. Sun, M.M. Meerschaert, Y. Zhang, J. Zhu, and W. Chen, A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv. Water Resour. 52 (2013), 292–295.

    Article  Google Scholar 

  26. Z. Tshiprut, A.E. Filippov, and M. Urbakh, The effect of lateral vibrations on transport and friction in nanoscale contacts. Tribol. Int. 40 (2007), 967–972.

    Article  Google Scholar 

  27. F. Vericat, A lattice gas of prime numbers and the Riemann Hypothesis. Physica A 392 (2013), 4516–4522.

    Article  MathSciNet  Google Scholar 

  28. K. Weron, and M. Kotulski, On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Physica A. 232 (1996), 180–188.

    Article  Google Scholar 

  29. M. Wolf, Random walk on the prime numbers. Physica A 250 (1998), 335–344.

    Article  Google Scholar 

  30. A. Yildirim, M.D. Oner, and M. Bayram, Fitting Fick’s model to analyze water diffusion into chickpeas during soaking with ultrasound treatment. J. Food Eng. 104 (2011), 134–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liang, Y., Hu, S. et al. Fractional derivative anomalous diffusion equation modeling prime number distribution. FCAA 18, 789–798 (2015). https://doi.org/10.1515/fca-2015-0047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0047

MSC 2010

Keywords

Navigation