Skip to main content
Log in

Fractional Pennes’ Bioheat Equation: Theoretical and Numerical Studies

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Alekseev, M.C. Ziskin, Influence of blood flowand millimeter wave exposure on skin temperature in different thermal models. Bioelectro- magnetics 30 (2009), 52–58.

    Article  Google Scholar 

  2. H. Barcroft, O.G. Edholm, Temperature and blood flow in the human forearm. J. Physiol. 104 (1946), 366–376.

    Article  Google Scholar 

  3. C. Cattaneo, Sulla conduzione del Calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1948), 83–101.

    MathSciNet  MATH  Google Scholar 

  4. C. Cattaneo, Sur une forme de l’équation de la chaleur liminant le paradoxe d’une propagation instantané. C. R. Acad. Sci. 247 (1958), 431–433.

    MathSciNet  MATH  Google Scholar 

  5. M.M. Chen, K.R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 335 (1980), 137–150.

    Article  Google Scholar 

  6. R.S. Damor, S. Kumar, A.K. Shukla, Numerical solution of fractional bioheat equation with constant and sinusoidal heat flux coindition on skin tissue. American J. of Mathematical Analysis 1 (2013), 20–24.

    Google Scholar 

  7. C.R. Davies, G.M. Saidel, H. Harasaki, Sensitivity analysis of one-dimensional heat transfer in tissue with temperature-dependent perfusion. J. Biomech. Eng. 119 (1997), 77–80.

    Article  Google Scholar 

  8. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer (2010).

    Book  Google Scholar 

  9. B. Erdmann, J. Lang, M. Seebass, Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model. Ann. N. Y. Acad. Sci. 858 (1998), 36–46.

    Article  Google Scholar 

  10. M.A. Ezzat, N.S. AlSowayan, Z.I.A. Al-Muhiameed, S.M. Ezzat, Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transfer 50 (2014), 907–914; DOI: 10.1007/s00231-014-1300-x.

    Article  Google Scholar 

  11. N.J. Ford, M.L. Morgado, M. Rebelo, A numerical method for the distributed order time-fractional diffusion equation. In: IEEE Explore Conf. Proc, ICFDA’14 International Conf. on Fractional Differentiation and Its Applications, Catania, Italy (2014).

    Google Scholar 

  12. N.J. Ford, M.L. Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, No 4 (2013), 874–891; DOI: 10.2478/sl3540-013-0054-3; http://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xmlview/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.

    Google Scholar 

  13. A.P. Gagge, Rational temperature indices of man’s thermal environment and their use with a 2-node model of his temperature regulation. Fed. Proc. 32 (1973), 1572–1582.

    Google Scholar 

  14. A.P. Gagge, A.P. Fobelets, L.G. Berglund, A standard predictive index of human response to the thermal environment. ASHRAE Trans. 92 (1986), 709–731.

    Google Scholar 

  15. C. Gong, W. Bao, G. Tang, A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method. Fract. Calc. Appl. Anal. 16, No 3 (2013), 654–669; DOI: 10.2478/s13540-013-0041-8; http://www.degruyter.com/view/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xmlview/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml.

    Google Scholar 

  16. R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics 29 (2002), 129–143.

    Article  MathSciNet  Google Scholar 

  17. T.R. Gowrishankar, D.A. Stewart, G.T. Martin, J.C. Weaver, Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion. Biomed. Eng. Online 3 (2004), Id 42, 17p.; doi: 10.1186/1475-925X-3-42.

  18. M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31 (1968), 113–126.

    Article  MathSciNet  Google Scholar 

  19. J.F. Huang, Y.F. Tang, W.J. Wang, J.Y. Yang, A compact difference scheme for time fractional diffusion equation with Neumann boundary conditions. In: AsiaSim 2012, Asia Simulation Conference 2012, Part I, Shanghai, China (2012), 273–284; doi: 10.1007/978-3-642-34384-1_33.

    Google Scholar 

  20. X. Jiang, H. Qi, Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A: Math. Theor. 45 (2012), Id 485101, 11 p.

  21. W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transfer 112 (1990), 555–560.

    Article  Google Scholar 

  22. I. Karatay, N. Kale, S.R. Bayramoglu, A new difference scheme for time fractional heat equations based on the Crank-Nicholson method. Fract. Calc. Appl. Anal. 16, No 4 (2013), 892–910; DOI: 10.2478/sl3540-013-0055-2; http://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xmlview/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  23. H.G. Klinger, Heat transfer in perfused biological tissue, I. General theory. B. Math. Biol. 36 (1974), 403–415.

    MathSciNet  MATH  Google Scholar 

  24. A. Lakhssassi, E. Kengne, H. Semmaoui, Investigation of nonlinear temperature distribution in biological tissues by using bioheat transfer equation of Pennes’ type. Natural Science 3 (2010), 131–138.

    Article  Google Scholar 

  25. A. Lakhssassi, E. Kengne, H. Semmaoui, Modifed Pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Natural Science 2 (2010), 1375–1385.

    Article  Google Scholar 

  26. B. Li, J. Wang, Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Physical Review Letters 91 (2003), Id 044301, 1–4; DOI: http://dx.doi.org/10.1103/PhysRevLett.91.044301.

    Google Scholar 

  27. W.J. Minkowycz, E.M. Sparrow, J.P. Abraham, Advances in Numerical Heat Transfer, Vol. 3. CRC Press, Boca Raton, USA (2010).

    Google Scholar 

  28. M.L. Morgado, M. Rebelo, Numerical approximation of distributed order nonlinear reaction-diffusion equations. J. of Computational and Applied Mathematics 275 (2015), 216–227.

    Article  MathSciNet  Google Scholar 

  29. D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Computers and Mathematics with Appl. 56 (2008), 1138–1145.

    Article  MathSciNet  Google Scholar 

  30. J.-H. Niu, H.-Z. Wang, H.-X. Zhang, J.-Y. Yan, Y.-S. Zhu, Cellular neural network analysis for two dimensional bioheat transfer equation. Med. Biol. Eng. Comput. 39 (2001), 601–604.

    Article  Google Scholar 

  31. W.L. Nyborg, Solutions of the bio-heat transfer equation. Phys. Med. Biol. 33 (1988), 785–792.

    Article  Google Scholar 

  32. M.N. Özişik, D.Y. Tzou, O. the wave theory in heat conduction. J. Heat Transfer 116 (1994), 526–535.

    Article  Google Scholar 

  33. H.H. Pennes, Analysis of tissue and arterial temperatures in the resting human forearm. J. Appl. Physiol. 1 (1948), 93–122.

    Article  Google Scholar 

  34. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28 (2005), 83–102.

    Article  MathSciNet  Google Scholar 

  35. Y. Povstenko, Thermoelasticity which uses fractional heat conduction equation. J. Math. Sci. 162 (2009), 296–305.

    Article  MathSciNet  Google Scholar 

  36. T.-C. Shih, P. Yuan, W.-L. Lin, H.-S. Kou, Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Med. Eng. Phis. 29 (2007), 946–953.

    Article  Google Scholar 

  37. J. Sun, A. Zhang, L.X. Xu, Evaluation of alternate cooling and heating for tumor treatment. International J. of Heat and Mass Transfer 51 (2008), 5478–5485; doi:10.1016/j.ijheatmasstransfer.2008.04.027.

    Article  Google Scholar 

  38. M. Tunç, Ü. Çamdali, C. Parmaksizoğlu, S. Çikrikçi, The bioheat transfer equation and its applications in hyperthermia treatments. Eng. Computation. 23 (2006), 451–463.

    Article  Google Scholar 

  39. S. Weinbaum, L.M. Jiji, D.E. Lemons, Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part I. Anatomical foundation and model conceptualization. J. Biomech. Eng.-T. ASME 106 (1984), 321–330.

    Article  Google Scholar 

  40. E.H. Wissler, Pennes’ 1948 paper revisited. J. Appl. Physiol. 85 (1998), 35–41.

    Article  Google Scholar 

  41. W. Wulff, The Energy conservation equation for living tissues. IEEE Transactions - Biomedical Engineering 21 (1974), 494–495.

    Article  Google Scholar 

  42. A. Zolfaghari, M. Maerefat, A New Simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environment. Build. Environ. 45 (2010), 2068–2076.

    Article  Google Scholar 

  43. A. Zolfaghari, M. Maerefat, Developments in Heat Transfer. Edited by Marco Aurelio Dos Santos Bernardes, InTech (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis L. Ferrás.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrás, L.L., Ford, N.J., Morgado, M.L. et al. Fractional Pennes’ Bioheat Equation: Theoretical and Numerical Studies. FCAA 18, 1080–1106 (2015). https://doi.org/10.1515/fca-2015-0062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0062

MSC 2010

Key Words and Phrases

Navigation