Skip to main content
Log in

Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper proposes a global Padé approximation of the generalized Mittag-Leffler function Eα,β(-x) with x ∈ [0, ∞). This uniform approximation can account for both the Taylor series for small arguments and asymptotic series for large arguments. Based on the complete monotonicity of the function Eα,β(-x), we work out the global Padé approximation [1/2] for the particular cases (0 < α < 1, β > α), (0 < α = β < 1}, and (a = 1, ß > 1), respectively. Moreover, these approximations are inverted to yield a global Padé approximation of the inverse generalized Mittag- Leffler function -Lα,β(x) with x ∈ (0, 1/Г(β)]. We also provide several examples with selected values a and ß to compute the relative error from the approximations. Finally, we point out the possible applications using our established approximations in the ordinary and partial time-fractional differential equations in the sense of Riemann-Liouville.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Atkinson, A. Osseiran, Rational solutions for the time-fractional diffusion equation. SIAM J. Appl. Math. 71, (2011), 92–106.

    Article  MathSciNet  Google Scholar 

  2. M. Concezzi, R. Spigler, Some analytical and numerical properties of the Mittag-Leffler functions. Fract. Calc. Appl. Anal. 418, No 1 (2015), 64–94; DOI: 10.1515/fca-2015-0006; http://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  3. K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: a selection of numerical methods. Comput. Method. Appl. M. 194, No 6 (2005), 743–773.

    Article  MathSciNet  Google Scholar 

  4. M.M. Dzherbashyan, Integral Transforms and Representation of Functions in Complex Domain (in Russian). Nauka, Moscow (1966).

    Google Scholar 

  5. A. Erdélyi, Magnus, F. Oberhettinger, F.G. Tricomi (Eds.), Higher Transcendental Functions. McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  6. W. Feller, An Introduction to Probability Theory and Its Applications. 2nd Edition, John Wiley & Sons (1971).

    MATH  Google Scholar 

  7. R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler function. SIAM J. Numer. Anal. 53, (2015), 1350-169.

  8. R. Garrappa, The Mittag-Leffler function, Matlab Central File Exchange; http://www.mathworks.com/matlabcentral/fileexchange/48154 (8-10-2015).

    Google Scholar 

  9. R. Gorenflo, J. Loutchko, Y. Luchko, Computation of the Mittag-Leffler function Ea,ß(z) and its derivatives. Fract. Calc. Appl. Anal. 5, No 4 (2002), 491–518.

    MathSciNet  MATH  Google Scholar 

  10. H.J. Haubold, A.M. Mathaiand, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011), Article ID 298628.

  11. R. Hilfer, H.J. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integr. Transf. Spec. Funct. 17, No 9 (2006), 637–652.

    Article  MathSciNet  Google Scholar 

  12. A.A. Kilbas, M. Saigo, On Mittag-Leffler type function, fractional calculas operators and solutions of integral equations. Integr. Transf. Spec. Funct. 4, No 4 (1996), 355–370.

    Article  Google Scholar 

  13. A.A. Kilbas, M. Saigo, R. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct. 15, No 1 (2004), 31–49.

    Article  MathSciNet  Google Scholar 

  14. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science Limited (2006).

    MATH  Google Scholar 

  15. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010).

    Book  Google Scholar 

  16. F. Mainardi, On some properties of the Mittag-Leffler function Eα(-tα), completely monotone for t > 0 with 0 < α < 1. Discrete Cont. Dyn-B 19, No 7 (2014), 2267–2278.

    MathSciNet  MATH  Google Scholar 

  17. F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, No 1 (2000), 283–299.

    Article  MathSciNet  Google Scholar 

  18. F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Cal. Appl. Anal. 410, No 3 (2007), 269–308; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  19. K.S. Miller, S.G. Samko, A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal. Exchange 23, No 2 (1997), 753–755.

    Article  MathSciNet  Google Scholar 

  20. G.M. Mittag-Leffler, Sur la nouvelle fonction Ega(x). C. R. Acad. Sci. Paris 137, (1903), 554–558.

    MATH  Google Scholar 

  21. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York - London (1974).

    MATH  Google Scholar 

  22. J. Peng, K. Li, A note on property of the Mittag-Leffler function. J.Math. Anal. Appl. 370, No 2 (2010), 635–796.

    Article  MathSciNet  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  24. I. Podlubny, Mittag-Leffler function, Matlab Central File Exchange; http://www.mathworks.com/matlabcentral/fileexchange/8738.

  25. H. Pollard, The completely monotonic character of the Mittag-Leffler function Eα(-x). Bull. Amer. Math. Soc. 54 (1948), 1115–1116.

    Article  MathSciNet  Google Scholar 

  26. W.R. Schneider, Completely monotone generalized Mittag-Leffer functions. Expo. Math. 14 (1996), 3–16.

    MATH  Google Scholar 

  27. H. Seybold, R. Hilfer, Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal. 47 (2008), 69–88.

    Article  MathSciNet  Google Scholar 

  28. H. Sheng, Y.Q. Chen, T. Qiu, Fractional Processes and Fractional- Order Signal Processing. Springer, London (2012).

    Book  Google Scholar 

  29. S.T. Spencer, J.W. Hanneken, T.R. Ensley, B.N. Narahari, Properties of the Mittag-Leffler function. In: Amer. Phys. Soc. Mar. Meeting, Denver, CO, (2007), Abstract R1.00249.

    Google Scholar 

  30. A.P. Starovoitov, N.A. Starovoitova, Padé approximants of the Mittag- Leffler functions. Sb. Math. 198, No 7 (2007), 1011–1023.

    Article  MathSciNet  Google Scholar 

  31. A. Wiman, Über den fundamentalsatz in der teorie der funktionen Eα(x). Acta Math. 29 (1905), 191–201.

    Article  MathSciNet  Google Scholar 

  32. S. Winitzki, Uniform approximations for transcendental functions. ICCSA 2003, Springer (2003), 780–789.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caibin Zeng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Chen, Y.Q. Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse. FCAA 18, 1492–1506 (2015). https://doi.org/10.1515/fca-2015-0086

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0086

Keywords

Navigation