Skip to main content
Log in

High-Order Algorithms for Riesz Derivative and their Applications (III)

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Numerical methods for fractional calculus attract increasing interest due to its wide applications in various fields such as physics, mechanics, etc. In this paper, we focus on constructing high-order algorithms for Riesz derivatives, where the convergence orders cover from the second order to the sixth order. Then we apply the established schemes to the Riesz type turbulent diffusion equation (or, Riesz space fractional turbulent diffusion equation). Numerical experiments are displayed which support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015), 424–438.

    Article  MathSciNet  Google Scholar 

  2. T. Blaszczyk and M. Ciesielski, Numerical solution of fractional Sturm-Liouville equation in integral form. Fract. Calc. Appl. Anal. 17, No 2 (2015), 307–320. DOI: 10.2478/s13540-014-0170-8; http://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  3. J.X. Cao, C.P. Li, and Y.Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, No 3 (2015), 735–761. DOI: 10.1515/fca-2015-0045; http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  4. Y. Dimitrov, Numerical Approximations for fractional differential equations. J. Fract. Calc. Appl. 5, No 3S (2014), Article No 22, 1–45.

    MathSciNet  Google Scholar 

  5. H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal. 2014 (2014), Article ID 653797, 1–17.

    MathSciNet  MATH  Google Scholar 

  6. H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293 (2015), 218–237.

    Article  MathSciNet  Google Scholar 

  7. R. Garrappa, S. Esmaeili, A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation. Int. J. Comput. Math. 92 (2015), 980–994.

    Article  MathSciNet  Google Scholar 

  8. R. Garra and F. Polito, Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218 (2012), 10642–10646.

    MathSciNet  MATH  Google Scholar 

  9. B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional-order parabolic equations. SIAMJ. Numer. Anal. 51 (2013), 445–466.

    Article  MathSciNet  Google Scholar 

  10. Sh.T. Karimov., Multidimensional generalized Erdélyi-Kober operator and its application to solving Cauchy problems for differential equations with singular coeffcients. Fract. Calc. Appl. Anal. 18, No 4 (2015), 845–861. DOI: 10.1515/fca-2015-0051; http://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  11. J.C. Kuang., Applied Inequalities, 2nd Ed. Shandong Scienic and Technology Press, Shandong, China (2012).

    Google Scholar 

  12. C.P. Li., A. Chen, and J.J. Ye., Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230 (2011), 3352–3368.

    Article  MathSciNet  Google Scholar 

  13. C.P. Li. and H.F. Ding., Higher order finite difference method for reaction and anomalous diffusion equation. Appl. Math. Model. 38 (2014), 3802–3821.

    Article  MathSciNet  Google Scholar 

  14. C.P. Li., R.F. Wu., and H.F. Ding., High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (I). Commun. Appl. Ind. Math. 6, No 2 (2014), e-536, 1–32; doi: 10.1685/journal.caim.536.

    MathSciNet  MATH  Google Scholar 

  15. C.P. Li. and F.H. Zeng., Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton, USA (2015).

    Book  Google Scholar 

  16. Ch. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986), 704–719.

    Article  MathSciNet  Google Scholar 

  17. Yu. Luchko and V. Kiryakova, The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 16, No 2 (2013), 405–430. DOI: 10.2478/s13540-013-0025-8; http://www.degruyter.com/view/ j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  18. A. Mohebbi and M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation. Numer. Algor. 63 (2013), 431–452.

    Article  MathSciNet  Google Scholar 

  19. G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes, Fract. Calc. Appl. Anal. 16, No 2 (2013), 436–453. DOI: 10.2478/s13540-013-0027-6; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  20. J. Sabatier and C. Farges, On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 22, No 4 (2012), Art. ID 1250084, 1–8.

    Article  Google Scholar 

  21. A.W. Wharmby. and R.L. Bagley., Modifying Maxwell’s equations for dielectric materials based on techniques from viscoelasticity and concepts from fractional calculus. Int. J. Eng. Sci. 79 (2014), 59–80.

    Article  Google Scholar 

  22. F.H. Zeng., C.P. Li., F.W. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. 37 (2015), A55–A78.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Hengfei.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hengfei, D., Changpin, L. High-Order Algorithms for Riesz Derivative and their Applications (III). FCAA 19, 19–55 (2016). https://doi.org/10.1515/fca-2016-0003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0003

MSC

Key Words and Phrases

Navigation