Skip to main content
Log in

A Computational Approach for the Solution of A Class of Variable-Order Fractional Integro-Differential Equations With Weakly Singular Kernels

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

A new computational approach for approximating of variable-order fractional derivatives is proposed. The technique is based on piecewise cubic spline interpolation. The method is extended to a class of nonlinear variable-order fractional integro-differential equation with weakly singular kernels. Illustrative examples are discussed, demonstrating the performance of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Abdul-Jabbar, On Inverse Problems of Fractional Order Integro-Differential Equations. Lap Lambert Academic Publ. GmbH KG (2012).

    Google Scholar 

  2. R. Almeida, D.F.M. Torres, An expansion formula with higher-order derivatives for fractional operators of variable order. The Scientific World Journal 2013 (2013), 1–11; 10.1155/2013/915437.

    Google Scholar 

  3. T. Atanackovic, S. Pilipovic, Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14, No 1 (2011), 94–109; 10.2478/s13540-011-0007-7;https://www.degruyter.com/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  4. E.A. Butcher, A. Dabiri, M. Nazari, Transition curve analysis of linear fractional periodic time-delayed systems via explicit harmonic balance method. Journal of Computational and Nonlinear Dynamics 11, No 4 (2015), # 041005; 10.1115/1.4031840.

    Google Scholar 

  5. A. Chakrabarti, Applied Singular Integral Equations. Informa UK Limited (2011); 10.1201/b10883.

    MATH  Google Scholar 

  6. W. Chen, J. Zhang, J. Zhang, A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 16, No 1 (2013), 76–92; 10.2478/s13540-013-0006-y; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  7. C. Corduneanu, Integral Equations and Applications. Cambridge Univ. Press (1991); 10.1017/cbo9780511569395.003.

  8. A. Dabiri, E.A. Butcher, Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun. in Nonlinear Sci. and Numer. Simul. 50 (2017) 284–310; 10.1016/j.cnsns.2017.02.009.

    MathSciNet  MATH  Google Scholar 

  9. A. Dabiri, E.A. Butcher, Stable fractional Chebyshev differentiation matrix for the numerical of multi-order fractional differential equaions. Nonlinear Dynamics (2017), First Online: 19 July 2017, 17 pp.; 10.1007/s11071-017-3654-3.

    Google Scholar 

  10. H. Jafari, H. Tajadodi, D. Baleanu, A numerical approach for fractional order Riccati differential equation using B-spline operational matrix. Fract. Calc. Appl. Anal. 18, No 2 (2015), 387–399; 10.1515/fca-2015-0025; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  11. G.D. Knott, Interpolating Cubic Splines. Springer Nature (2000); 10.1007/978-1-4612-1320-8.

  12. C. Li, A. Chen, J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation. Journal of Computational Physics 230, No 9 (2011), 3352–3368; 10.1016/j.jcp.2011.01.030.

    MathSciNet  MATH  Google Scholar 

  13. Z. Li, H. Wang, R. Xiao, S. Yang, A variable-order fractional differential equation model of shape memory polymers. Chaos, Solitons & Fractals (2017), In Press; 10.1016/j.chaos.2017.04.042.

    Google Scholar 

  14. Z. Liu, S. Zeng, Y. Bai, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; 10.1515/fca-2016-0011;https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  15. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynamics 29, No 1-4 (2002), 57–98; 10.1023/A:1016586905654.

    MathSciNet  MATH  Google Scholar 

  16. R. MacCamy, P. Weiss, Numerical solution of Volterra integral equations. Nonlinear Analysis: Theory, Methods & Applications 3, No 5 (1979), 677–695; 10.1016/0362-546x(79)90096-8.

    MathSciNet  MATH  Google Scholar 

  17. J.A.T. Machado, A.M.S.F. Galhano, J.J. Trujillo, On development of fractional calculus during the last fifty years. Scientometrics 98, No 1 (2013), 577–582; 10.1007/s11192-013-1032-6.

    Google Scholar 

  18. J.A.T. Machado, Numerical calculation of the left and right fractional derivatives. Journal of Computational Physics 293 (2015), 96–103; 10.1016/j.jcp.2014.05.029.

    MathSciNet  MATH  Google Scholar 

  19. J.A.T. Machado, F. Mainardi, V. Kiryakova, Fractional calculus: Quo vadimus? (Where are we going?). Fract. Calc. Appl. Anal. 18, No 2 (2015), 495–526; 10.1515/fca-2015-0031; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  20. S. Mashayekhi, M. Razzaghi, Numerical solution of nonlinear fractional integro-differential equations by hybrid functions. Engineering Analysis with Boundary Elements 56 (2015), 81–89; 10.1016/j.enganabound.2015.02.002.

    MathSciNet  MATH  Google Scholar 

  21. B.P. Moghaddam, A. Aghili, A numerical method for solving linear non-homogenous fractional ordinary differential equation. Applied Mathematics & Information Sciences 6 (2012), 441–445.

    MathSciNet  Google Scholar 

  22. B.P. Moghaddam, S. Yaghoobi, J.A.T. Machado, An extended predictor-corrector algorithm for variable-order fractional delay differential equations. Journal of Computational and Nonlinear Dynamics 11, No 6 (2016), # 061001; 10.1115/1.4032574.

    Google Scholar 

  23. B. Moghaddam, J. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Computers & Mathematics with Applications 73, No 6 (2017), 1262–1269; 10.1016/j.camwa.2016.07.010.

    MathSciNet  MATH  Google Scholar 

  24. B.P. Moghaddam, Z.S. Mostaghim, Modified finite difference method for solving fractional delay differential equations. Boletim da Sociedade Paranaense de Matematica 35, No 2 (2017), 49–58; 10.5269/bspm.v35i2.25081.

    MathSciNet  MATH  Google Scholar 

  25. B.P. Moghaddam, J.A.T. Machado, Extended algorithms for approximating variable order fractional derivatives with applications. Journal of Scientific Computing 71, No 3 (2017), 1351–1374; 10.1007/s10915-016-0343-1.

    MathSciNet  MATH  Google Scholar 

  26. B.P. Moghaddam, J.A.T. Machado, J.A.T. SM-algorithms for approximating the variable-order fractional derivative of high order. Fundamenta Informaticae 151, No 1-4 (2017), 293–311; 10.3233/fi-2017-1493.

    MathSciNet  MATH  Google Scholar 

  27. B.P. Moghaddam, J.A.T. Machado, H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos, Solitons & Fractals (2017), In Press; 10.1016/j.chaos.2017.03.065.

    Google Scholar 

  28. S.M. Momani, Local and global existence theorems on fractional integro-differential equations. J. Fract. Calc 18 (2000), 81–86.

    MathSciNet  MATH  Google Scholar 

  29. S. Momani, A. Jameel, S. Al-Azawi, Local and global uniqueness theorems on fractional integro-differential equations via Bihari’s and Gronwall’s inequalities. Soochow J. of Mathematics 33, No 4 (2007), 619.

    Google Scholar 

  30. S. Nemati, S. Sedaghat, I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. J. of Computational and Applied Mathematics 308 (2016), 231–242; 10.1016/j.cam.2016.06.012.

    MathSciNet  MATH  Google Scholar 

  31. J. Orosco, C.F.M. Coimbra, On the control and stability of variable-order mechanical systems. Nonlinear Dynamics 86, No 1 (2016), 695–710; 10.1007/s11071-016-2916-9.

    MathSciNet  Google Scholar 

  32. L.E.S. Ramirez, C.F.M. Coimbra, On the selection and meaning of variable order operators for dynamic modeling. International J. of Differential Equations 2010 (2010), 1–16; 10.1155/2010/846107.

    MathSciNet  MATH  Google Scholar 

  33. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral Transforms and Special Functions 1, No 4 (1993), 277–300; 10.1080/10652469308819027.

    MathSciNet  MATH  Google Scholar 

  34. H. Sheng, H. Sun, C. Coopmans, Y. Chen, G. Bohannan, A physical experimental study of variable-order fractional integrator anddifferentiator. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 93–104; 10.1140/epjst/e2011-01384-4.

    Google Scholar 

  35. H. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 185–192; 10.1140/epjst/e2011-01390-6.

    Google Scholar 

  36. N. Sweilam, M. Khader, H. Almarwm, Numerical studies for the variable-order nonlinear fractional wave equation. Fract. Calc. Appl. Anal. 15, No 4 (2012), 669–683; 10.2478/s13540-012-0045-9; https://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  37. H. Tang, D. Wang, R. Huang, X. Pei, W. Chen, A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. Bull. Eng. Geol. Environ. (2017), 9 pp.; 10.1007/s10064-016-0992-1.

    Google Scholar 

  38. D. Tavares, R. Almeida, D.F. Torres, Caputo derivatives of fractional variable order: numerical approximations. Commun. in Nonlin. Sci. and Numer. Simul. 35 (2016), 69–87; 10.1016/j.cnsns.2015.10.027.

    MathSciNet  MATH  Google Scholar 

  39. D. Valério, J.S. da Costa, Variable-order fractional derivatives and their numerical approximations. Signal Processing 91, No 3 (2011), 470–483; 10.1016/j.sigpro.2010.04.006.

    MATH  Google Scholar 

  40. Y. Wang, L. Zhu, SCW method for solving the fractional integro-differential equations with a weakly singular kernel. Applied Mathematics and Computation 275 (2016), 72–80; 10.1016/j.amc.2015.11.057.

    MathSciNet  MATH  Google Scholar 

  41. Y. Xu, V. Suat Ertürk, A finite difference technique for solving variable-order fractional integro-differential equations. Bulletin of the Iranian Mathematical Society 40 (2014), 699–712.

    MathSciNet  MATH  Google Scholar 

  42. S. Yaghoobi, B.P. Moghaddam, K. Ivaz, An effcient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dynamics 87, No 2 (2016), 815–826; 10.1007/s11071-016-3079-4.

    MATH  Google Scholar 

  43. M. Yi, J. Huang, CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel. International J. of Computer Mathematics 92, No 8 (2014), 1715–1728; 10.1080/00207160.2014.964692.

    MathSciNet  MATH  Google Scholar 

  44. M. Yi, L. Wang, J. Huang, Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel. Applied Mathematical Modelling 40, No 4 (2016), 3422–3437; 10.1016/j.apm.2015.10.009.

    MathSciNet  MATH  Google Scholar 

  45. J. Zhao, J. Xiao, N.J. Ford, Collocation methods for fractional integro-differential equations with weakly singular kernels. Numerical Algorithms 65, No 4 (2013), 723–743; 10.1007/s11075-013-9710-2.

    MathSciNet  MATH  Google Scholar 

  46. X. Zhao, Z. Z. Sun, G. E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. of Computational Physics 293 (2015), 184–200; 10.1016/j.jcp.2014.08.015.

    MathSciNet  MATH  Google Scholar 

  47. L. Zhu, Q. Fan, Numerical solution of nonlinear fractional-order volterra integro-differential equations by SCW. Commun. in Nonlin. Sci. and Numer. Simul. 18, No 5 (2013), 1203–1213; 10.1016/j.cnsns.2012.09.024.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Parsa Moghaddam.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, B.P., Tenreiro Machado, J.A. A Computational Approach for the Solution of A Class of Variable-Order Fractional Integro-Differential Equations With Weakly Singular Kernels. FCAA 20, 1023–1042 (2017). https://doi.org/10.1515/fca-2017-0053

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0053

MSC 2010

Key Words and Phrases

Navigation