Skip to main content
Log in

Novel Numerical Analysis of Multi-Term Time Fractional Viscoelastic Non-Newtonian Fluid Models for Simulating Unsteady Mhd Couette Flow of a Generalized Oldroyd-B Fluid

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the application of the finite difference method for a class of novel multi-term time fractional viscoelastic non-Newtonian fluid models. An important contribution of the work is that the new model not only has a multi-term time derivative, of which the fractional order indices range from 0 to 2, but also possesses a special time fractional operator on the spatial derivative that is challenging to approximate. There appears to be no literature reported on the numerical solution of this type of equation. We derive two new different finite difference schemes to approximate the model. Then we establish the stability and convergence analysis of these schemes based on the discrete H1 norm and prove that their accuracy is of O(τ + h2) and O(τmin{3–γs,2–αq,2–β}+h2), respectively. Finally, we verify our methods using two numerical examples and apply the schemes to simulate an unsteady magnetohydrodynamic (MHD) Couette flow of a generalized Oldroyd-B fluid model. Our methods are effective and can be extended to solve other non-Newtonian fluid models such as the generalized Maxwell fluid model, the generalized second grade fluid model and the generalized Burgers fluid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 27, No 3 (1983), 201–210.

    Article  Google Scholar 

  2. E. Bazhlekova, I. Bazhlekov, Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski. Fract. Calc. Appl. Anal. 17, No 4 (2014), 954–976; DOI: 10.2478/s13540-014-0209-x; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  3. A. Böttcher, B. Silbermann, Analysis of Toeplitz operators. Springer- Verlag, Berlin (2005).

    MATH  Google Scholar 

  4. J. Chen, F. Liu, V. Anh, S. Shen, Q. Liu, C. Liao, The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, No 4 (2012), 1737–1748.

    MathSciNet  MATH  Google Scholar 

  5. V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multiterm fractional differential equations. J. Math. Anal. Appl. 345 (2008), 754–765.

    Article  MathSciNet  Google Scholar 

  6. M. Dehghan, M. Safarpoor, M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290 (2015) 174–195.

    Article  MathSciNet  Google Scholar 

  7. L. Feng, F. Liu, I. Turner, P. Zhuang, Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates. Internat. J. of Heat and Mass Transfer 115 (2017), 1309–1320.

    Article  Google Scholar 

  8. N.J. Ford, J.A. Connolly, Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 229, No 2 (2009), 382–391.

    Article  MathSciNet  Google Scholar 

  9. C. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivative. Rheologica Acta 30, No 2 (1991), 151–158.

    Article  Google Scholar 

  10. A. Hernández-Jimenez, J. Hernández-Santiago, A. Macias-García, J. Sánchez-González, Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing 21, No 3 (2002), 325–331.

    Article  Google Scholar 

  11. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Press, Singapore (2000).

    Book  Google Scholar 

  12. H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, No 10 (2012), 3377–3388.

    Article  MathSciNet  Google Scholar 

  13. B. Jin, R. Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281 (2015), 825–843.

    Article  MathSciNet  Google Scholar 

  14. C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, No 3 (2011), 855–875.

    Article  MathSciNet  Google Scholar 

  15. F. Liu, M. Meerschaert, R. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time-fractional wavediffusion equation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 9–25; DOI:10.2478/s13540-013-0002-2; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  16. F. Liu, P. Zhuang, Q. Liu, Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beingjing (2015).

    Google Scholar 

  17. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation. Appl. Math. Comput. 191, No 1 (2007), 12–20.

    MathSciNet  MATH  Google Scholar 

  18. Y. Liu, L. Zheng, X. Zhang, Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61, No 2 (2011), 443–450.

    Article  MathSciNet  Google Scholar 

  19. J.C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. on Numerical Analysis 27, No 1 (1990), 20–31.

    Article  MathSciNet  Google Scholar 

  20. Y. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl. 374, No 2 (2011), 538–548.

    Article  MathSciNet  Google Scholar 

  21. M. Khan, S. Hyder Ali, H. Qi, Some accelerated flows for a generalized Oldroyd-B fluid. Nonlinear Anal. Real World Appl. 10, No 2 (2009), 980–991.

    Article  MathSciNet  Google Scholar 

  22. M. Khan, K. Maqbool, T. Hayat, Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space. Acta Mechanica 184, No 1 (2006), 1–13.

    Article  Google Scholar 

  23. N. Makris, M.C. Constantinou, Fractional-derivative Maxwell model for viscous dampers. J. of Structural Engineering 117, No 9 (1991), 2708–2724.

    Article  Google Scholar 

  24. C. Ming, F. Liu, L. Zheng, I. Turner, V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. Comput. Math. Appl. 72, No 9 (2016), 2084–2097.

    Article  MathSciNet  Google Scholar 

  25. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  26. H. Qi, M. Xu, Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta Mechanica Sinica 23, No 5 (2007), 463–469.

    Article  MathSciNet  Google Scholar 

  27. S. Qin, F. Liu, I. Turner, A two-dimensional multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements. Commun. Nonlin. Sci. Numer. Simul. 56 (2018), 270–286.

    Article  Google Scholar 

  28. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics. Springer-Verlag, Berlin (2000).

    MATH  Google Scholar 

  29. Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, No 2 (2006), 193–209.

    Article  MathSciNet  Google Scholar 

  30. H. Ye, F. Liu, V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comp. Physics 298 (2015), 652–660.

    Article  MathSciNet  Google Scholar 

  31. L. Zheng, Y. Liu, X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal. Real World Appl. 13, No 2 (2012), 513–523.

    Article  MathSciNet  Google Scholar 

  32. M. Zheng, F. Liu, V. Anh, I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40, No 7 (2016), 4970–4985.b

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Feng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Liu, F., Turner, I. et al. Novel Numerical Analysis of Multi-Term Time Fractional Viscoelastic Non-Newtonian Fluid Models for Simulating Unsteady Mhd Couette Flow of a Generalized Oldroyd-B Fluid. FCAA 21, 1073–1103 (2018). https://doi.org/10.1515/fca-2018-0058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0058

MSC 2010

Key Words and Phrases

Navigation