Skip to main content
Log in

A Review on Variable-Order Fractional Differential Equations: Mathematical Foundations, Physical Models, Numerical Methods and Applications

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Variable-order (VO) fractional differential equations (FDEs) with a time (t), space (x) or other variables dependent order have been successfully applied to investigate time and/or space dependent dynamics. This study aims to provide a survey of the recent relevant literature and findings in primary definitions, models, numerical methods and their applications. This review first offers an overview over the existing definitions proposed from different physical and application backgrounds, and then reviews several widely used numerical schemes in simulation. Moreover, as a powerful mathematical tool, the VO-FDE models have been remarkably acknowledged as an alternative and precise approach in effectively describing real-world phenomena. Hereby, we also make a brief summary on different physical models and typical applications. This review is expected to help the readers for the selection of appropriate definition, model and numerical method to solve specific physical and engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Almeida, N.R.O. Bastos, M.T.T. Monteiro, A fractional Malthusian growth model with variable order using an optimization approach. Stat. Optim. Inf. Comput., 6 No 1 (2018), 4–11.

    MathSciNet  Google Scholar 

  2. R. Almeida, D. Tavares, D.F.M. Torres, The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2018).

    MATH  Google Scholar 

  3. R. Almeida, D.F.M. Torres, Computing Hadamard type operators of variable fractional order. Appl. Math. Comput., 257 (2015), 74–88.

    MathSciNet  MATH  Google Scholar 

  4. V.V. Anh, J.M. Angulo, M.D. Ruiz-Medina, Diffusion on multifractals. Nonlinear Anal.-Theor., 63 No 5 (2005), 2043–2056.

    MATH  Google Scholar 

  5. A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys., 293 No C (2015), 104–114.

    MathSciNet  MATH  Google Scholar 

  6. A. Atangana, J.F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative. Bound. Value Probl., 2013 No 1 (2013), # 53.

    MathSciNet  MATH  Google Scholar 

  7. A. Atangana, A.H. Cloot, Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ., 2013 No 1 (2013), 1–10.

    MATH  Google Scholar 

  8. A.A. Awotunde, R.A. Ghanam, N.E. Tatar, Artificial boundary condition for a modified fractional diffusion problem. Bound. Value Probl., 2015 No 1 (2015), # 20.

    MathSciNet  MATH  Google Scholar 

  9. R.L. Bagley, The thermorheologically complex material. J. Acoust. Soc. Am., 90 No 7 (1991), 797–806.

    MATH  Google Scholar 

  10. P. Balasubramaniam, P. Muthukumar, K. Ratnavelu, Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dynam., 80 No 1-2 (2015), 249–267.

    MathSciNet  MATH  Google Scholar 

  11. A.H. Bhrawy, M.A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynam., 80 No 1-2 (2015), 101–116.

    MathSciNet  MATH  Google Scholar 

  12. A.H. Bhrawy, M.A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dynam., 85 No 3 (2016), 1815–1823.

    MathSciNet  MATH  Google Scholar 

  13. A.H. Bhrawy, M.A. Zaky, An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. Appl. Numer. Math., 111 (2017), 197–218.

    MathSciNet  MATH  Google Scholar 

  14. Y. Bouras, D. Zorica, T.M. Atanacković, Z. Vrcelj, A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. Appl. Math. Model., 55 (2018), 551–568.

    MathSciNet  MATH  Google Scholar 

  15. D.W. Brzeziński, P. Ostalczyk, About accuracy increase of fractional order derivative and integral computations by applying the Grünwald-Letnikov formula. Commun. Nonlinear Sci., 40 (2016), 151–162.

    MathSciNet  MATH  Google Scholar 

  16. W. Cai, W. Chen, J. Fang, S. Holm, A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation. Appl. Mech. Rev., 70 No 3 (2018), # 030802.

    Google Scholar 

  17. J. Cao, Y. Qiu, A high order numerical scheme for variable order fractional ordinary differential equation. Appl. Math. Lett., 61 (2016), 88–94.

    MathSciNet  MATH  Google Scholar 

  18. A. Chang, H. Sun, Time-space fractional derivative models for CO2 transport in heterogeneous media. Fract. Calc. Appl. Anal., 21 No 1 (2018), 151–173; DOI: 10.1515/fca-2018-0010; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  19. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Phys. A: Gen. Phys., 38 No 42 (2005), 679–684.

    MathSciNet  MATH  Google Scholar 

  20. Y. Chen, C. Chen, Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equation. Appl. Math. Comput., 320 (2018), 319–330.

    MathSciNet  MATH  Google Scholar 

  21. C. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput., 32 No 4 (2010), 1740–1760.

    MathSciNet  MATH  Google Scholar 

  22. S. Chen, F. Liu, K. Burrage, Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl., 68 No 12 (2014), 2133–2141.

    MathSciNet  MATH  Google Scholar 

  23. Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput., 238 No 7 (2014), 329–341.

    MathSciNet  MATH  Google Scholar 

  24. Y. Chen, L. Liu, D. Liu, D. Boutat, Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials. Ain Shams Eng. J., 9 No 4 (2018), 1235–1241.

    Google Scholar 

  25. H. Chen, H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math., 296 (2015), 480–498.

    MathSciNet  MATH  Google Scholar 

  26. Y. Chen, Y. Wei, D. Liu, D. Boutat, X. Chen, Variable-order fractional numerical differentiation for noisy signals by wavelet denoising. J. Comput. Phys., 311 (2016), 338–347.

    MathSciNet  MATH  Google Scholar 

  27. Y. Chen, Y. Wei, D. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl. Math. Lett., 46 (2015), 83–88.

    MathSciNet  MATH  Google Scholar 

  28. W. Chen, J. Zhang, J. Zhang, A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal., 16 No 1 (2013), 76–92; DOI: 10.2478/s13540-013-0006-y; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  29. T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. J. Colloid Interf. Sci., 301 No 2 (2006), 436–440.

    Google Scholar 

  30. C.F.M. Coimbra, Mechanics with variable-order differential operators. Ann. Der Phys., 12 No 11-12 (2003), 692–703.

    MathSciNet  MATH  Google Scholar 

  31. C.F.M. Coimbra, D. ĽEsperance, R.A. Lambert, J.D. Trolinger, R.H. Rangel, An experimental study on stationary history effects in high-frequency Stokes flows. J. Fluid Mech., 504 No 504 (2004), 353–363.

    MATH  Google Scholar 

  32. C.F.M. Coimbra, R.H. Rangel, Spherical particle motion in harmonic Stokes flows. AIAA J., 39 No 9 (2015), 1673–1682.

    Google Scholar 

  33. G.R.J. Cooper, D.R. Cowan, Filtering using variable order vertical derivatives. Comput. Geosci., 30 No 5 (2004), 455–459.

    Google Scholar 

  34. A. Dabiri, B.P. Moghaddam, J.A.T. Machado, Optimal variable-order fractional PID controllers for dynamical systems. J. Comput. Appl. Math., 339 (2018), 40–48.

    MathSciNet  MATH  Google Scholar 

  35. W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys., 227 No 2 (2007), 1510–1522.

    MathSciNet  MATH  Google Scholar 

  36. G. Diaz, C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam., 56 No 1 (2009), 145–157.

    MathSciNet  MATH  Google Scholar 

  37. G. Diaz, C.F.M. Coimbra, Dynamics and control of nonlinear variable order oscillators. Ch. 6. Nonlinear Dynamics (Eds: T. Evans), InTech. (2010), 129–144.

    Google Scholar 

  38. Z. Fu, W. Chen, L. Ling, Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem., 57 (2015), 37–46.

    MathSciNet  MATH  Google Scholar 

  39. Z. Ge, C. Ou, Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal. Chaos Soliton. Fract., 35 No 4 (2008), 705–717.

    Google Scholar 

  40. D.N. Gerasimov, V.A. Kondratieva, O.A. Sinkevich, An anomalous non-self-similar infiltration and fractional diffusion equation. Phys. D Nonlinear Phenom., 239 No 16 (2010), 1593–1597.

    MATH  Google Scholar 

  41. W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J., 68 No 1 (1995), 46–53.

    Google Scholar 

  42. J.F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A, 494 (2018), 52–75.

    MathSciNet  Google Scholar 

  43. R.M. Hafez, Y.H. Youssri, Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. Comput. Appl. Math., 37 No 4 (2018), 5315–5333.

    MathSciNet  MATH  Google Scholar 

  44. G. He, M. Luo, Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control. Appl. Math. Mech., 33 No 5 (2012), 567–582.

    MathSciNet  MATH  Google Scholar 

  45. R. Herrmann, Uniqueness of the fractional derivative definition. arXiv Preprint, arXiv:1303.2939 (2013).

    Google Scholar 

  46. M.H. Heydari, Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems. Asian J. Control, 20 No 5 (2017), 1–14.

    MathSciNet  Google Scholar 

  47. M.H. Heydari, Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation. Comput. Appl. Math., 37 No 4 (2018), 4397–4411.

    MathSciNet  MATH  Google Scholar 

  48. Y. Hong, J. Lin, W. Chen, Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method. Int. J. Heat Mass Tran., 129 (2019), 449–459.

    Google Scholar 

  49. D. Ingman, J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Method. Appl. Mech. Eng., 193 No 52 (2004), 5585–5595.

    MathSciNet  MATH  Google Scholar 

  50. D. Ingman, J. Suzdalnitsky, M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech., 67 No 2 (2000), 383–390.

    MATH  Google Scholar 

  51. Y. Jia, M. Xu, Y. Lin, A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett., 64 (2017), 125–130.

    MathSciNet  MATH  Google Scholar 

  52. W. Jiang, H. Li, A space-time spectral collocation method for the two-dimensional variable-order fractional percolation equations. Comput. Math. Appl., 75 No 10 (2018), 3508–3520.

    MathSciNet  MATH  Google Scholar 

  53. W. Jiang, N. Liu, A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math., 119 (2017), 18–32.

    MathSciNet  MATH  Google Scholar 

  54. S. Jiang, J. Zhang, Z. Qian, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys., 21 No 3 (2017), 650–678.

    MathSciNet  MATH  Google Scholar 

  55. S.N. Kamenia, J.D. Djidaa, A. Atangana, Modelling the movement of groundwater pollution with variable order derivative. J. Nonlinear Sci. Appl., 10 (2017), 5422–5432.

    MathSciNet  MATH  Google Scholar 

  56. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier. (2006).

    MATH  Google Scholar 

  57. Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Statistical physics of dynamic systems with variable memory. Dokl. Phys., 48 No 6 (2003), 285–289.

    MathSciNet  MATH  Google Scholar 

  58. Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Anomalous diffusion with time-and coordinate-dependent memory. Dokl. Phys., 48 No 6 (2003), 264–268.

    MathSciNet  MATH  Google Scholar 

  59. P. Kumar, S.K. Chaudhary, Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Tech., 9 No 5 (2017), 408–416.

    Google Scholar 

  60. T.A.M. Langlands, B.I. Henry, Fractional chemotaxis diffusion equations. Phys. Rev. E, 81 (2010), # 051102.

    MathSciNet  Google Scholar 

  61. J.R. Leith, Fractal scaling of fractional diffusion processes. Signal Process., 83 No 11 (2003), 2397–2409.

    MATH  Google Scholar 

  62. Z. Li, H. Wang, R. Xiao, S. Yang, A variable-order fractional differential equation model of shape memory polymers. Chaos Soliton. Fract., 102 (2017), 473–485.

    MathSciNet  Google Scholar 

  63. X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett., 43 (2015), 108–113.

    MathSciNet  MATH  Google Scholar 

  64. X. Li, B. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. J. Comput. Appl. Math., 311 (2016), 387–393.

    MathSciNet  MATH  Google Scholar 

  65. R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput., 212 No 2 (2009), 435–445.

    MathSciNet  MATH  Google Scholar 

  66. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynam., 29 No 1 (2002), 57–98.

    MathSciNet  MATH  Google Scholar 

  67. C.F. Lorenzo, T.T. Hartley, Initialization, conceptualization, and application in the generalized fractional calculus. Crit. Rev. Biomed. Eng., 35 No 6 (2007), 477–553.

    Google Scholar 

  68. R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson., 190 No 2 (2008), 255–270.

    Google Scholar 

  69. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math., 51 No 1 (2006), 80–90.

    MathSciNet  MATH  Google Scholar 

  70. R. Meng, D. Yin, C. Zhou, H. Wu, Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl. Math. Model., 40 No 1 (2016), 398–406.

    MathSciNet  MATH  Google Scholar 

  71. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 No 1 (2000), 1–77.

    MathSciNet  MATH  Google Scholar 

  72. B.P. Moghaddam, J.A.T. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl., 73 (2017), 1262–1269.

    MathSciNet  MATH  Google Scholar 

  73. B.P. Moghaddam, J.A.T. Machado, H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Soliton. Fract., 102 No Suppl. C (2017), 354–360.

    MathSciNet  MATH  Google Scholar 

  74. P. Muthukumar, P. Balasubramaniam, Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynam., 74 No 4 (2013), 1169–1181.

    MathSciNet  MATH  Google Scholar 

  75. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos, 24 No 3 (2014), # 033105.

    MathSciNet  MATH  Google Scholar 

  76. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dynam., 77 No 4 (2014), 1547–1559.

    MathSciNet  MATH  Google Scholar 

  77. P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB). Nonlinear Dynam., 80 No 4 (2015), 1883–1897.

    MATH  Google Scholar 

  78. J. Pinheiro Neto, R. Moura Coelho, D. Valério, S. Vinga, D. Sierociuk, W. Malesza, M. Macias, A. Dzieliński, Variable order differential models of bone remodelling. IFAC Int. Fed. Autom. Control, 50 No 1 (2017), 8066–8071.

    MATH  Google Scholar 

  79. S. Nimmo, A.K. Evans, The effects of continuously varying the fractional differential order of chaotic nonlinear systems. Chaos Soliton. Fract., 10 No 7 (1999), 1111–1118.

    MathSciNet  MATH  Google Scholar 

  80. A.D. Obembe, M.E. Hossain, S.A. Abu-Khamsin, Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng., 152 (2017), 391–405.

    Google Scholar 

  81. H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, C.F.M. Coimbra, Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control, 14 No 9-10 (2008), 1659–1672.

    MathSciNet  MATH  Google Scholar 

  82. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego etc.. (1999).

    MATH  Google Scholar 

  83. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal., 5 No 4 (2002), 230–237.

    MathSciNet  MATH  Google Scholar 

  84. Y. Povstenko, J. Klekot, The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment. Bound. Value Probl., 2016 No 1 (2016), # 89.

    MathSciNet  MATH  Google Scholar 

  85. L.E.S. Ramirez, C.F.M. Coimbra, A variable order constitutive relation for viscoelasticity. Ann. Der Phys., 16 No 7-8 (2007), 543–552.

    MathSciNet  MATH  Google Scholar 

  86. A. Razminia, A.F. Dizaji, V.J. Majd, Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model., 55 No 3 (2012), 1106–1117.

    MathSciNet  MATH  Google Scholar 

  87. M.D. Ruiz-Medina, V.V. Anh, J.M. Angulo, Fractional generalized random fields of variable order. Stoch. Anal. Appl., 22 No 3 (2004), 775–799.

    MathSciNet  MATH  Google Scholar 

  88. S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math., 21 No 3 (1995), 213–236.

    MathSciNet  MATH  Google Scholar 

  89. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct., 1 No 4 (1993), 277–300.

    MathSciNet  MATH  Google Scholar 

  90. S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput., 218 No 22 (2011), 10861–10870.

    MathSciNet  MATH  Google Scholar 

  91. H. Sheng, H.G. Sun, Y.Q. Chen, T. Qiu, Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process., 91 No 7 (2011), 1645–1650.

    MATH  Google Scholar 

  92. H. Sheng, H.G. Sun, C. Coopmans, Y. Chen, G.W. Bohannan, A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top., 193 No 1 (2011), 93–104.

    Google Scholar 

  93. D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans., 371 No 1990 (2013), # 20120146.

    MathSciNet  MATH  Google Scholar 

  94. D. Sierociuk, W. Malesza, M. Macias, Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model., 39 No 13 (2014), 3876–3888.

    MathSciNet  MATH  Google Scholar 

  95. D. Sierociuk, W. Malesza, M. Macias, On the recursive fractional variable-order derivative: Equivalent switching strategy, duality, and analog modeling. Circ. Syst. Signal Process., 34 No 4 (2015), 1077–1113.

    MathSciNet  MATH  Google Scholar 

  96. W. Smit, H.D. Vries, Rheological models containing fractional derivatives. Rheol. Acta, 9 No 4 (1970), 525–534.

    Google Scholar 

  97. I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos, 15 No 2 (2005), # 26103.

    MathSciNet  MATH  Google Scholar 

  98. I.M. Sokolov, J. Klafter, Field-induced dispersion in subdiffusion. Phys. Rev. Lett., 97 No 14 (2006), # 140602.

    Google Scholar 

  99. J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Soliton. Fract., 114 (2018), 175–185.

    MathSciNet  MATH  Google Scholar 

  100. C.M. Soon, C.F.M. Coimbra, M.H. Kobayashi, The variable viscoelasticity oscillator. Ann. Der. Phys., 14 No 14 (2005), 378–389.

    MATH  Google Scholar 

  101. P. Straka, Variable order fractional Fokker-Planck equations derived from continuous time random walks. Phys. A, 503 (2018), 451–463.

    MathSciNet  Google Scholar 

  102. H.G. Sun, Y. Chen, W. Chen, Random-order fractional differential equation models. Signal Process., 91 No 3 (2011), 525–530.

    MathSciNet  MATH  Google Scholar 

  103. H.G. Sun, W. Chen, Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A, 388 No 21 (2009), 4586–4592.

    Google Scholar 

  104. H.G. Sun, W. Chen, C. Li, Y. Chen, Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcat. Chaos, 22 No 4 (2012), # 1250085.

    MathSciNet  MATH  Google Scholar 

  105. H.G. Sun, W. Chen, H. Sheng, Y. Chen, On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A, 374 No 7 (2010), 906–910.

    MATH  Google Scholar 

  106. H.G. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top., 193 No 1 (2011), 185–192.

    Google Scholar 

  107. H.G. Sun, S. Hu, Y. Chen, C. Wen, Z. Yu, A dynamic-order fractional dynamic system. Chinese Phys. Lett., 30 No 4 (2013), 365–367.

    Google Scholar 

  108. H.G. Sun, X. Song, Y. Chen, A class of fractional dynamic systems with fuzzy order. Intelligent Control and Automation IEEE, 20 No 1 (2010), 197–201.

    Google Scholar 

  109. H.G. Sun, Y. Zhang, W. Chen, D.M. Reeves, Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol., 157 (2014), 47–58.

    Google Scholar 

  110. J. Suzdalnitsky, D. Ingman, Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech., 131 No 7 (2005), 763–767.

    Google Scholar 

  111. N.H. Sweilam, S.M. Al-Mekhlafi, Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. J. Adv. Res., 7 No 2 (2016), 271–283.

    Google Scholar 

  112. N.H. Sweilam, M.M. Khader, H.M. Almarwm, Numerical studies for the variable-order nonlinear fractional wave equation. Fract. Calc. Appl. Anal., 15 No 4 (2012), 669–683; DOI: 10.2478/s13540-012-0045-9; https://www.degruyter.com/view/j/fca.2012.15.issue-4/s13540-012-0045-9/s13540-012-0045-9.xml.

    MathSciNet  MATH  Google Scholar 

  113. N.H. Sweilam, T.A. Rahman Assiri, Numerical simulations for the space-time variable order nonlinear fractional wave equation. J. Appl. Math., 2013 No 2013 (2013), 183–189.

    MATH  Google Scholar 

  114. D. Tavares, R. Almeida, D.F.M. Torres, Caputo derivatives of fractional variable order: Numerical approximations. Commun. Nonlinear Sci., 35 (2016), 69–87.

    MathSciNet  MATH  Google Scholar 

  115. A. Tayebi, Y. Shekari, M.H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys., 340 (2017), 655–669.

    MathSciNet  MATH  Google Scholar 

  116. C.C. Tseng, Design of variable and adaptive fractional order FIR differentiators. Signal Process., 86 No 10 (2018), 2554–2566.

    MATH  Google Scholar 

  117. S. Umarov, S. Steinberg, Variable order differential equations and diffusion processes with changing modes. Z. für Anal. Und Ihre Anwend., 28 No 4 (2010), 431–450.

    MATH  Google Scholar 

  118. D. Valério, J. Sá da Costa, Variable-order fractional derivatives and their numerical approximations. Signal Process., 91 No 3 (2011), 470–483.

    MATH  Google Scholar 

  119. F. Wang, Q. Hua, C. Liu, Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation. Appl. Math. Lett., 84 (2018), 130–136.

    MathSciNet  MATH  Google Scholar 

  120. S. Wang, R. Wu, Dynamic analysis of a 5D fractional-order hyperchaotic system. Int. J. Control Autom. Syst., 15 No 3 (2017), 1003–1010.

    Google Scholar 

  121. S. Wei, W. Chen, Y. Zhang, H. Wei, R.M. Garrard, A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain. Numer. Method. Part. Differ. Equ., 34 No 4 (2018), 1209–1223.

    MathSciNet  MATH  Google Scholar 

  122. G. Wu, D. Baleanu, H. Xie, S. Zeng, Lattice fractional diffusion equation of random order. Math. Method. Appl. Sci., 40 No 17 (2015), 6054–6060.

    MathSciNet  MATH  Google Scholar 

  123. F. Wu, J. Liu, J. Wang, An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ. Earth Sci., 73 No 11 (2015), 6965–6971.

    Google Scholar 

  124. T. Xu, S. Lü, W. Chen, H. Chen, Finite difference scheme for multi-term variable-order fractional diffusion equation. Adv. Differ. Equ., 2018 No 1 (2018), # 103.

    MathSciNet  MATH  Google Scholar 

  125. W. Xu, H.G. Sun, W. Chen, H. Chen, Transport properties of concrete-like granular materials interacted by their microstructures and particle components. Int. J. Mod. Phys. B, 32 No 18 (2018), # 1840011.

    Google Scholar 

  126. X. Yang, C. Li, T. Huang, Q. Song, Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput., 293 (2017), 416–422.

    MathSciNet  MATH  Google Scholar 

  127. X. Yang, J.A.T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A, 481 (2017), 276–283.

    MathSciNet  Google Scholar 

  128. J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation. Appl. Math. Lett., 76 (2018), 221–226.

    MathSciNet  MATH  Google Scholar 

  129. A. Yildirim, S.T. Mohyud-Din, Analytical approach to space- and time-fractional Burgers equations. Chinese Phys. Lett., 27 No 9 (2010), 38–41.

    Google Scholar 

  130. D. Yin, Y. Li, H. Wu, X. Duan, Fractional description of mechanical property evolution of soft soils during creep. Water Sci. Eng., 6 No 4 (2013), 446–455.

    Google Scholar 

  131. S.B. Yuste, L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal., 42 No 5 (2005), 1862–1874.

    MathSciNet  MATH  Google Scholar 

  132. M.A. Zaky, E.H. Doha, T.M. Taha, D. Baleanu, New recursive approximations for variable-order fractional operators with applications. Math. Model. Anal., 2 No 2018 (2018), 1–28.

    MathSciNet  MATH  Google Scholar 

  133. M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys., 293 No C (2015), 312–338.

    MathSciNet  MATH  Google Scholar 

  134. F. Zeng, Z. Zhang, G.E. Karniadakis, A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations. SIAM J. Sci. Comput., 37 No 6 (2015), 2710–2732.

    MathSciNet  MATH  Google Scholar 

  135. L. Zhang, S. Li, Regularity of weak solutions of the Cauchy problem to a fractional porous medium equation. Bound. Value Probl., 2015 No 1 (2015), 1–6.

    MathSciNet  Google Scholar 

  136. H. Zhang, F. Liu, The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions. Numer. Math. A J. Chinese Univ. (Engl. Ser.), 16 No 2 (2007), # 181.

    MathSciNet  MATH  Google Scholar 

  137. H. Zhang, F. Liu, M.S. Phanikumar, M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl., 66 No 5 (2013), 693–701.

    MathSciNet  MATH  Google Scholar 

  138. X. Zhao, Z. Sun, G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys., 293 (2015), 184–200.

    MathSciNet  MATH  Google Scholar 

  139. P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal., 47 No 3 (2009), 1760–1781.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGuang Sun.

Additional information

This paper won the “Riemann-Liouville Award: Best FDA Paper (Theory)” at the Conference ICFDA 2018.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chang, A., Zhang, Y. et al. A Review on Variable-Order Fractional Differential Equations: Mathematical Foundations, Physical Models, Numerical Methods and Applications. FCAA 22, 27–59 (2019). https://doi.org/10.1515/fca-2019-0003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0003

MSC 2010

Key Words and Phrases

Navigation