Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 26, 2018

The influence of bamboo fiber content on the non-isothermal crystallization kinetics of bamboo fiber-reinforced polypropylene composites (BPCs)

  • Chin-Yin Hsu , Teng-Chun Yang , Tung-Lin Wu , Ke-Chang Hung and Jyh-Horng Wu EMAIL logo
From the journal Holzforschung

Abstract

Bamboo fiber (BF)-reinforced polypropylene (PP) composites (BPCs) have been investigated and it was shown by differential scanning calorimetry (DSC) that BF is a nucleation agent and accelerates the crystallization rate of the PP matrix. Numerical analyses according to Avrami, Avrami-Ozawa, and Friedman described well the nucleation mechanism, the crystallization rate and the activation energy for the non-isothermal crystallization behavior of BPCs, respectively. The Avrami approach indicated that BF as a reinforcement significantly changed the crystal growth mechanism of PP matrix during the cooling process. Based on the Avrami-Ozawa method, a lower cooling rate can achieve a certain relative crystallinity degree within a time period. According to the Friedman method, the activation energies of BPCs were lower than that of neat PP below a relative crystallinity of 35%, when the BF content was more than 60%.

Acknowledgment

This work was financially supported by a research grant from the Ministry of Science and Technology, Taiwan (grant no. MOST 105-2628-B-005-002-MY3).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Ministry of Science and Technology of Taiwan (MOST 105-2628-B-005-002-MY3).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Arbelaiz, A., Fernández, B., Ramos, J. A., Mondragón, I. (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Termochim. Acta. 440:111–121.10.1016/j.tca.2005.10.016Search in Google Scholar

Avrami, M. (1939) Kinetics of phase change. I: general theory. J. Chem. Phys. 7:1103–1112.10.1063/1.1750380Search in Google Scholar

Avrami, M. (1940) Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8:212–224.10.1063/1.1750631Search in Google Scholar

Avrami, M. (1941) Kinetics of phase change. III: granulation, phase change, and microstructure. J. Chem. Phys. 9:177–184.10.1063/1.1750872Search in Google Scholar

Buzarovska, A., Bogoeva-Gaceva, G., Grozdnov, A., Avella, M. (2006) Crystallization behavior of polyhydroxybutyrate in model composites with kenaf fibers. J. Appl. Polym. Sci. 102:804–809.10.1002/app.24139Search in Google Scholar

Cebe, P., Hong, S. D. (1986) Crystallization behaviour of poly(ether-ether-ketone). Polymer 27:1183–1192.10.1016/0032-3861(86)90006-6Search in Google Scholar

Chand, N., Fahim, M. Tribology of natural fiber polymer composites. Woodhead Publishing, Cambridge, 2008.10.1201/9781439832592Search in Google Scholar

Chattopadhyay, S. K., Khandal, R. K., Uppaluri, R., Ghoshal, A. K. (2011) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J. Appl. Polym. Sci. 119:1619–1626.10.1002/app.32826Search in Google Scholar

Chen, X., Guo, Q., Mi, Y. (1998) Bamboo fibre-reinforced polypropylene composite: a study of the mechanical properties. J. Appl. Polym. Sci. 69:1891–1899.10.1002/(SICI)1097-4628(19980906)69:10<1891::AID-APP1>3.0.CO;2-9Search in Google Scholar

Cheng, H., Gao, J., Wang, G., Shi, S. Q., Zhang, S., Cai, L. (2015) Enhancement of mechanical properties of composites made of calcium carbonate modified bamboo fibers and polypropylene. Holzforschung 69:215–221.10.1515/hf-2014-0020Search in Google Scholar

Das, M., Chakraborty, D. (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibres due to alkali treatment. J. Appl. Polym. Sci. 107:522–527.10.1002/app.26155Search in Google Scholar

Deshpande, A. P., Bhaskar Rao, M., Laksjmana Rao, C. (2000) Extraction of bamboo fibers and their use as reinforcement in polymeric composites. J. Appl. Polym. Sci. 76:83–92.10.1002/(SICI)1097-4628(20000404)76:1<83::AID-APP11>3.0.CO;2-LSearch in Google Scholar

Ding, Q., Zhang, Z., Wang, C., Jiang, J., Li, G., Mai, K. (2014) Non-isothermal crystallization kinetics and morphology of wollastonite-filled β-isotactic polypropylene composites. J. Therm. Anal. Calorim. 115:675–688.10.1007/s10973-013-3171-7Search in Google Scholar

Eder, M., Wlochowicz, A. (1983) Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer 24:1593–1595.10.1016/0032-3861(83)90177-5Search in Google Scholar

Friedman, H. L. (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Polm. Symp. 6:183–195.10.1002/polc.5070060121Search in Google Scholar

Hao, W., Yang, W., Cai, H., Huang, Y. (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym. Test. 29:527–533.10.1016/j.polymertesting.2010.03.004Search in Google Scholar

Jeziorny, A. (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D. S. C. Polymer 19:1142–1144.10.1016/0032-3861(78)90060-5Search in Google Scholar

Kamal, M. R., Chu, E. (1983) Isothermal and nonisothermal crystallization of polyethylene. Polym. Eng. Sci. 23:27–31.10.1002/pen.760230107Search in Google Scholar

Kissinger, H. E. (1956) Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nat. Inst. Stand. Technol. 57:217–221.10.6028/jres.057.026Search in Google Scholar

Kitagawa, K., Ishiaku, U. S., Mizoguchi, M., Hamada, H. (2005) Bamboo-based ecocomposites and their potential applications. In: Natural Fibres, Biopolymers, and Biocomposites. Eds. Mohanty, A. K., Misra, M., Drzalv, L. T. CRC Press, Florida.10.1201/9780203508206.ch11Search in Google Scholar

Lee, S.-H., Ohkita, T. (2004) Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite – Effect of BF-e-MA on the properties and crystallization kinetics. Holzforschung 58:537–543.10.1515/HF.2004.081Search in Google Scholar

Lee, S.-H., Ohkita, T., Kitagawa, K. (2004) Eco-composite from poly(lactic acid) and bamboo fiber. Holzforschung 58:529–536.10.1515/HF.2004.080Search in Google Scholar

Lee, S. Y., Chun, S. J., Doh, G. H., Kang, I. A., Lee, S., Paik, K. H. (2009) Influence of chemical modification and filler loading on fundamental properties of bamboo fibres reinforced polypropylene composites. J. Compos. Mater. 43:1639–1657.10.1177/0021998309339352Search in Google Scholar

Li, Y., Yin, L., Huang, C., Meng, Y., Fu, F., Wang, S., Wu, Q. (2015) Quasi-static and dynamic nanoindentation to determine the influence of thermal treatment on the mechanical properties of bamboo cell walls. Holzforschung 69:909–914.10.1515/hf-2014-0112Search in Google Scholar

Li, Y., Huang, C., Wang, L., Wang, S., Wang, X. (2017) The effects of thermal treatment on the nanomechanical behavior of bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) cell walls observed by nanoindentation, XRD, and wet chemistry. Holzforschung 71:129–135.10.1515/hf-2016-0124Search in Google Scholar

Liu, T., Mo, Z., Wang, S., Zhang, H. (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 37:568–575.10.1002/pen.11700Search in Google Scholar

Liu, T., Mo, Z., Zhang, H. (1998) Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J. Appl. Polym. Sci. 67:815–821.10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-WSearch in Google Scholar

Liu, H., Jiang, Z., Fei, B., Hse, C., Sun, Z. (2015) Tensile behaviour and fracture mechanism of moso bamboo (Phyllostachys pubescens). Holzforschung 69:47–52.10.1515/hf-2013-0220Search in Google Scholar

Liu, H., Wang, X., Zhang, X., Sun, Z., Jiang, Z. (2016) In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy. Holzforschung 70:1183–1190.10.1515/hf-2016-0003Search in Google Scholar

Marinelli, A. L., Bretas, R. E. S. (2003) Blends of polypropylene resins with a liquid crystalline polymer, I. Isothermal crystallization. J. Appl. Polym. Sci. 87:916–930.10.1002/app.11386Search in Google Scholar

Mohanty, A. K., Misra, M., Drzal, L. T. (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10:19–26.10.4324/9781315793245-107Search in Google Scholar

Niu, P., Wang, X., Liu, B., Long, S., Yang, J. (2012) Melting and nonisothermal crystallization behavior of polypropylene/hemp fiber composites. J. Compos. Mater. 46:203–210.10.1177/0021998311410494Search in Google Scholar

Okubo, K., Fujii, T., Yamamoto, Y. (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos. Part A-Appl. S. 35:377–383.10.1016/j.compositesa.2003.09.017Search in Google Scholar

Ou, R., Guo, C., Xie, Y., Wang, Q. (2011) Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/HDPE composites. Bioresources 6:4547–4565.10.15376/biores.6.4.4547-4565Search in Google Scholar

Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158.10.1016/0032-3861(71)90041-3Search in Google Scholar

Phuong, N. T., Girbert, V. (2010) Non-isothermal crystallization kinetics of short bamboo fiber-reinforced recycled polypropylene composites. J. Reinf. Plast. Compos. 28:1–16.Search in Google Scholar

Regis, M., Zanetti, M., Pressacco, M., Bracco, P. (2016) Opposite role of different carbon reinforcements on the non-isothermal crystallization behavior of poly(etheretherketone). Mater. Chem. Phy. 179:223–231.10.1016/j.matchemphys.2016.05.034Search in Google Scholar

Run, M., Song, H., Yao, C., Wang, Y. (2007) Crystal morphology and nonisothermal crystallization kinetics of short carbon fiber/poly(trimethylene terephthalate) composites. J. Appl. Polym. Sci. 106:868–877.10.1002/app.26661Search in Google Scholar

Shen, H., Xie, B., Yang, W., Yang, M. (2013) Non-isothermal crystallization of polyethylene blends with bimodal molecular weight distribution. Polym. Test. 32:1385–1391.10.1016/j.polymertesting.2013.09.002Search in Google Scholar

Takagi, H., Ichihara, Y. (2004) Effect of fibre length on mechanical properties of green composites using starch-based resin and short bamboo fibres. JSME Int. J. 47:551–555.10.1299/jsmea.47.551Search in Google Scholar

Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., Fujiura, T. (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J. Mater. Sci. 43:775–787.10.1007/s10853-007-1994-ySearch in Google Scholar

Vyazovkin, S. (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol. Rapid. Commun. 23:771–775.10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-GSearch in Google Scholar

Wang, H., An, X., Li, W., Wang, H., Yu, Y. (2014) Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms. Holzforschung 68:291–297.10.1515/hf-2013-0081Search in Google Scholar

Yang, T.-C., Wu, T.-L., Hung, K.-C., Chen, Y.-L., Wu, J.-H. (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time-temperature superposition principle. Constr. Build. Mater. 93:558–563.10.1016/j.conbuildmat.2015.06.038Search in Google Scholar

Received: 2017-3-15
Accepted: 2017-9-18
Published Online: 2018-1-26
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2017-0046/html
Scroll to top button