Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 22, 2015

Production of Oil and Char by Intermediate Pyrolysis of Scrap Tyres: Influence on Yield and Product Characteristics

  • Rolando Acosta , Claudia Tavera , Paola Gauthier-Maradei and Debora Nabarlatz EMAIL logo

Abstract

Scrap tyres represent a severe environmental problem that must be solved by developing technologies allowing the processing of high quantities of this residue. This work presents the results of pyrolysis oil and pyrolytic char production by intermediate pyrolysis of rubber recovered from scrap tyres. The influence of process variables such as particle size, temperature and reaction time on the characteristics of the products obtained was analysed. Maximal yields of 52.56 and 39.50 wt% of pyrolysis oil and pyrolytic char, respectively, were obtained, under operational conditions that favoured the production of pyrolysis oil. The products obtained were a pyrolytic char with a maximal surface area of 85.16 m2/g and fixed carbon content of 78.55 wt%; and pyrolysis oil with a higher heating value of 42.94 MJ/kg, real density of 0.948 g/mL, viscosity 2.29×10−3 Pa s and acidity between 0.39 and 1.57 mg KOH/g. The highest total aromatics (benzene, toluene, xylenes and ethylbenzene) yield in pyrolysis oil was obtained at a temperature of 466°C and volumetric gas flow of 155 NmL/min. In addition, at these conditions, the pyrolysis oil having the maximum aromatic yield showed the lowest acidity. Nevertheless, it was observed that the highest pyrolysis oil yield does not necessarily lead to a higher yield of aromatics.

Funding statement: Funding: This work was funded by the “Vicerrectoría de Investigación y Extensión” from Universidad Industrial de Santander (“Rubber valorization from scrap tyres as raw material for oil and activated carbon production”, grant/award number 5457). The authors also acknowledge to Universidad de los Andes for financial support (“Sensor development for detection and quantification of sulphur components present in gaseous effluents during pyrolysis of scrap tyres” Cod. 6450-1235-22). R. Acosta is grateful to Colciencias for the Young Researcher scholarship. C. Tavera is grateful to Colciencias for the PhD scholarship.

Acknowledgments

The authors want to acknowledge to Silvia Moncada, Yenny Sánchez and Diego Villamizar for their participation in some of the experiments.

References

1. Acosta, R.A., Moncada, S.J., Gauthier-Maradei, P., Nabarlatz, D., 2013. Preliminary Study of Oil and Char Production by Intermediate Pyrolysis of Scrap Tyres Rubber. Rev. Investig. Univ. Quindío24(1), 139145.Search in Google Scholar

2. Alliger, G., Sjothun,I.J., 1964. Vulcanization of Elastomers. Principles and Practice of Vulcanization of Commercial Rubbers, Reinhold Publishing Co., New York.Search in Google Scholar

3. Aydin, H., Ilkilic, C., 2012. Optimization of Fuel Production from Waste Vehicle Tires by Pyrolysis and Resembling to Diesel Fuel by Various Desulfurization Methods. Fuel102, 605612.10.1016/j.fuel.2012.06.067Search in Google Scholar

4. Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M.V., García, T., Mastral, A.M., 2010. Valorisation of Waste Tyre by Pyrolysis in a Moving Bed Reactor. Waste Manag. 30(7), 12201224.10.1016/j.wasman.2009.10.001Search in Google Scholar

5. Chevron. 2007. Diesel Fuels Technical Review (FTR-2). USA: Chevron Products Company. Downloaded June 2014, http://www.chevron.com/.Search in Google Scholar

6. Benallal, B., RoyC., Pakdel, H., Chabot, S., PoirierM.A., 1995. Characterization of Pyrolytic Light Naphtha from Vacuum Pyrolysis of Used Tyres Comparison with Petroleum Naphtha. Fuel74(11), 15891594.10.1016/0016-2361(95)00165-2Search in Google Scholar

7. Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., García-Bacaicoa, P., 2005. Pyrolysis of Waste Tyres in an Atmospheric Static-Bed Batch Reactor: Analysis of the Gases Obtained. J. Anal. Appl. Pyrol. 74(1), 245253.10.1016/j.jaap.2004.10.007Search in Google Scholar

8. Bridgwater, A., 2012. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenerg38, 6894.10.1016/j.biombioe.2011.01.048Search in Google Scholar

9. Cano, E., CerezoL., UrbinaM., 2006. Valorización material y energética de neumáticos fuera de uso. Informe de Vigilancia Tecnológica, Círculo de Innovación de Materiales, Tecnología Aeroespacial y Nanotecnología (CIMTAN) (Ed.), Madrid, Spain, 1–100.Search in Google Scholar

10. Conesa, J., Martín GullónI., Font, R., Jauhiainen, J., 2004. Complete Study of the Pyrolysis and Gasification of Scrap Tires in a Pilot Plant Reactor. Environ. Sci. Technol. 38(11), 31893194.10.1021/es034608uSearch in Google Scholar

11. Corma, A., Corell, C.,Llopis, F., Martínez, A., Pérez-Pariente, J., 1994. Proposed Pore Volume Topology of Zeolite MCM-22 Based on Catalytic Tests. Appl. Catal. A Gen. 115, 121134.10.1016/0926-860X(94)80382-XSearch in Google Scholar

12. Devarly, P., KartikaY., IndraswatiN., Ismadji, S., 2008. Activated Carbon from Jackfruit Peel Waste by H3PO4 Chemical Activation: Pore Structure and Surface Chemistry Characterization. Chem. Eng. J. 140, 3242.10.1016/j.cej.2007.08.032Search in Google Scholar

13. Diez, C., MartínezO., Calvo, L.F., Morán, A., 2004. Pyrolysis of Tyres. Influence of the final Temperature of the Process on Emissions and the Calorific Value of the Products Recovered. Waste Manag. 24(5), 463469.10.1016/j.wasman.2003.11.006Search in Google Scholar PubMed

14. Fernández, A.M., Barriocanal, C., Alvarez, R., 2012. Pyrolysis of a Waste from the Grinding of Scrap Tyres. J. Hazard. Mater. 203–204, 236243.10.1016/j.jhazmat.2011.12.014Search in Google Scholar PubMed

15. Galvagno, S., Casu, S., Casabianca, T., Calabrese, A., Cornacchia, G., 2002. Pyrolysis Process for the Treatment of Scrap Tyres: Preliminary Experimental Results. Waste Manag. 22(8), 917923.10.1016/S0956-053X(02)00083-1Search in Google Scholar

16. Girods, P., Rogaume, Y., Dufour, A., RogaumeC., Zoulalian, A., 2008. Low-Temperature Pyrolysis of Wood Waste Containing Urea–Formaldehyde Resin. Renew. Energ. 33, 648654.10.1016/j.renene.2007.03.026Search in Google Scholar

17. Gonzalez, J.F., Encinar, J.M., Canito, J.L., and Rodríguez, J.J., 2001. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study. J. Anal. Appl. Pyrol. 58–59, 667683.10.1016/S0165-2370(00)00201-1Search in Google Scholar

18. İlkılıç, C., Aydın, H., 2011. Fuel Production from Waste Vehicle Tires by Catalytic Pyrolysis and Its Application in a Diesel Engine. Fuel Process. Technol. 92(5), 11291135.10.1016/j.fuproc.2011.01.009Search in Google Scholar

19. Jahirul, M.I., Rasul, M.G., Chowdhury, A.A., Ashwath, N., 2012. Biofuels Production through Biomass Pyrolysis–A Technological Review. Energies5(12), 49525001.10.3390/en5124952Search in Google Scholar

20. Katritzky, A.R., Ignatchenko, H.S., Barcock, R.A., Lobanov, V.S., 1994. Prediction of Gas Chromatographic Retention Times and Response Factors Using a General Quantitative Structure-Property Relationship Treatment. Anal. Chem. 66, 1799–1807.10.1021/ac00083a005Search in Google Scholar

21. Kyari, M., Cunliffe, A., Williams, P.T., 2005. Characterization of Oils, Gases, and Char in Relation to the Pyrolysis of Different Brands of Scrap Automotive Tires. Energ. Fuel19, 11651173.10.1021/ef049686xSearch in Google Scholar

22. Lee, Y.S., Lee, W.K., Cho, S.G., KimI., Ha, C.S., 2007. Quantitative Analysis of Unknown Compositions in Ternary Polymer Blends: A Model Study on NR/SBR/BR System. J. Anal. Appl. Pyrol. 78, 8594.10.1016/j.jaap.2006.05.001Search in Google Scholar

23. Li, S.Q., YaoQ., Chi, Y., Yan, J.H., Cen, K.F., 2004. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Ind. Eng. Chem. Res. 43, 51335145.10.1021/ie030115mSearch in Google Scholar

24. Li, S.Q., YaoQ., Wen, S.E., Chi, Y., Yan, J.H., 2005. Properties of Pyrolytic Chars and Activated Carbons Derived from Pilot-Scale Pyrolysis of Used Tyres. J. Air Waste Manag. Assoc. 55(9), 13151326.10.1080/10473289.2005.10464728Search in Google Scholar PubMed

25. Lopez, G., Olazar, M., Amutio, M., Aguado, R., Bilbao, J., 2009. Influence of Tire Formulation on the Products of Continuous Pyrolysis in a Conical Spouted Bed Reactor. Energ. Fuel23(11), 54235431.10.1021/ef900582kSearch in Google Scholar

26. Marin, B., 2012. En Favor Del Medio Ambiente: De Llanta De Vieja a Carbón Activado. Rev. Univ. Científica15(1), 3235.Search in Google Scholar

27. Martens, J.A., Perez-Pariente, J., Sastre, E., Corma, A., 1988. Isomerization and Disproportionation of m-Xylene: Selectivities Induced by Void Structure of the Zeolite Framework. Appl. Catal. 45, 85101.10.1016/S0166-9834(00)82395-7Search in Google Scholar

28. Mikulova, Z., Sedenkova, I., Matejova, L., Večeř, M., Dombek, V., 2013. Study of Carbon Black Obtained by Pyrolysis of Waste Scrap Tyres. J. Therm. Anal. Calorim. 111, 14751481.10.1007/s10973-012-2340-4Search in Google Scholar

29. Mui, E.L.K., Cheung, W.H., McKay, G., 2010. Tyre Char Preparation from Waste Tyre Rubber for Dye Removal from Effluents. J. Hazard. Mater. 175(1–3), 151158.10.1016/j.jhazmat.2009.09.142Search in Google Scholar

30. Napoli, A., Soudais, Y., Lecomte, D., Castillo, S., 1997. Scrap Tyre Pyrolysis: Are the Effluents Valuable Products?. J. Anal. Appl. Pyrol. 40/41, 373382.10.1016/S0165-2370(97)00011-9Search in Google Scholar

31. Ospina, J.A., Villada, S., 2011. Methods to Characterize Liquid and Gas Combustibles Obtain from the Useless Tyres Throw the ASTM Norms. Lámpsakos3(6), 2331.10.21501/21454086.830Search in Google Scholar

32. Pakdel, H., Roy, C., Aubin, H., Jean, G., Coulombe, S., 1991. Formation of Dl-Limonene in Used Tire Vacuum Pyrolysis Oils. Environ. Sci. Technol. 25, 16461649.10.1021/es00021a018Search in Google Scholar

33. PetróleosMexicanos Pemex, 2013. Institutional Database, consulted online in: http://ebdi.pemex.com/bdi/bdiController.do?action=temas, August 2013.Search in Google Scholar

34. Pines, H., Ryer, J., 1955. Studies in the Terpene Series XXIII. Pyrolysis of d-Limonene and of Related Hydrocarbons. Mechanisms of Pyrolysis. J Am. Chem. Soc. 77, 43704375.10.1021/ja01621a055Search in Google Scholar

35. Qu, W., ZhouQ., Wang, Y.Z., Zhang, J., Lan, W., Wu, Y.H., Yang, J.W.,WangD.Z., 2006. Pyrolysis of Waste Tire on ZSM-5 Zeolite with Enhanced Catalytic Activities. Polym. Degrad. Stab. 91, 23892395.10.1016/j.polymdegradstab.2006.03.014Search in Google Scholar

36. Quek, A., Balasubramanian, R., 2013. Liquefaction of Waste Tyres by Pyrolysis for Oil and Chemicals—A Review. J. Anal. Appl. Pyrol. 101, 116.10.1016/j.jaap.2013.02.016Search in Google Scholar

37. Raj, R.E., Kennedy, Z.R., Pillai, B.C., 2013. Optimization of Process Parameters in Flash Pyrolysis of Waste Tyres to Liquid and Gaseous Fuel in a Fluidized Bed Reactor. Energ. Convers. Manag. 67, 145151.10.1016/j.enconman.2012.11.012Search in Google Scholar

38. Rodriguez, I.M., Laresgoiti, M.F., Cabrero, M.A., Torres, A., Chomon, M.J., Caballero, B., 2001Pyrolysis of Scrap Tyres. Fuel Process. Technol. 72, 922.10.1016/S0378-3820(01)00174-6Search in Google Scholar

39. Rubber Manufactures Association, 2014. Typical Composition by Weight. Retrieved in July 16, 2014. from http://www.energyjustice.net/files/tires/files/scrapchn.html.Search in Google Scholar

40. Rushdi, A.I., BazeyadA.Y., Al-Awadi, A.S., Al-Mutlaq, K.F., Simoneit, B.R.T., 2013. Chemical Characteristics of Oil-Like Products from Hydrous Pyrolysis of Scrap Tires at Temperatures from 150 to 400°C. Fuel107, 578584.10.1016/j.fuel.2012.12.089Search in Google Scholar

41. San Miguel, G., Aguado, J., Serrano, D.P., Escola, J.M., 2006. Thermal and Catalytic Conversion of Use Tyre Rubber and Its Polymeric Constituents Using Py-GC/MS. Appl. Catal. B Environ. 64, 209219.10.1016/j.apcatb.2005.12.004Search in Google Scholar

42. San Miguel, G., FowlerG.D., Sollars, C. J., 2002. The Leaching of Inorganic Species from Activated Carbons Produced from Waste Tyre Rubber. Water Res. 36(8), 19391946.10.1016/S0043-1354(01)00422-5Search in Google Scholar

43. Seidelt, S., Müller-Hagedorn, M., Bockhorn, H., 2006. Description of Tire Pyrolysis by Thermal Degradation Behavior of Main Components. J. Anal. Appl. Pyrol75, 1118.10.1016/j.jaap.2005.03.002Search in Google Scholar

44. Straus, S., Madorsky, S.L., 1953. Pyrolysis of Styrene, Acrylate and Isoprene Polymers in a Vacuum. J. Res. Natl. Bur. Stand. 50, 165176.10.6028/jres.050.026Search in Google Scholar

45. Torres, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Legarreta, J.A., Cabrero, M.A., González, A., Chomón, M.J., Gondra, K., 2000. Recycling by Pyrolysis of Thermoset Composites: Characteristics of the Liquid and Gaseous Fuels Obtained. Fuel79, 897902.10.1016/S0016-2361(99)00220-3Search in Google Scholar

46. Valente Nabais, J.M., Laginhas, C., Carrott, P.J.M., Ribeiro Carrott, M.M.L., 2010. Thermal Conversion of a Novel Biomass Agricultural Residue (Vine Shoots) into Activated Carbon Using Activation with CO2. J. Anal. Appl. Pyrol. 87(1), 813.10.1016/j.jaap.2009.09.004Search in Google Scholar

47. Vecino Mantilla, S., Gauthier-Maradei, P., Alvarez Gil, P., Tarazona, S., 2014. Comparative Study of Bio-Oil Production from Sugarcane Bagasse and Palm Empty Fruit Bunch: Yield Optimization and Bio-Oil Characterization. J. Anal. Appl. Pyrol. 108, 284294.10.1016/j.jaap.2014.04.003Search in Google Scholar

48. Walters, F., Parker, L., Morgan, S., Deming, S., 1991. Sequential Simplex Optimization. Boca Raton, FL: CRC Press.Search in Google Scholar

49. Weissermel, K., Arpe, H.J., 1981. Química orgánica industrial, Ed. Reverté, Chap. 12, 293–295.Search in Google Scholar

50. Williams, P.T., Brindle, A.J., 2003. Aromatic Chemicals from the Catalytic Pyrolysis of Scrap Tyres. J. Anal. Appl. Pyrol. 67, 143164.10.1016/S0165-2370(02)00059-1Search in Google Scholar

51. Williams, P.T., Bottrill, R.P., Cunliffe, A.M., 1998. Combustion of Tyre Pyrolysis Oil. Process Saf. Environ. Prot. 76(4), 291301.10.1205/095758298529650Search in Google Scholar

Published Online: 2015-5-22
Published in Print: 2015-6-1

©2015 by De Gruyter

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2014-0137/html
Scroll to top button