Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 14, 2018

Cellulose Acetate Polymeric Membrane Fabrication by Nonsolvent-Induced Phase Separation Process: Determination of Velocities of Individual Components

  • Mashallah Rezakazemi , Alireza Hemmati and Saeed Shirazian EMAIL logo

Abstract

In this work, the velocities of individual components during the immersion process using mathematical modeling of a nonsolvent-induced phase separation process are investigated. For this purpose, a mass average velocity correction factor was defined as the ratio of mass average velocity in the absence of a zero polymer velocity assumption to the mass average velocity with zero polymer velocity assumption. The velocities were computed and the result was coherent with observations of a considered case study. It was concluded that the polymer moves towards the interface, as the sign of the polymer velocity at early moments of immersion was positive, which is in accord with accumulation and vitrification of the polymer at the interface. The positive sign of the solvent and the negative sign of nonsolvent are in accord with the observations as solvent leaves the cast film and nonsolvent penetrates into the film. The reduction of velocity values to the order of magnitude of diffusivities is in accord with the limiting role of the rigid skin layer for mass exchanges. Relatively large velocity values of the solvent rather than the nonsolvent imply that much more solvent is probably left in the cast film rather than the nonsolvent enters into it as observed by densification of the cast film.

References

[1] A. Dashti, M. Asghari, M. Dehghani, M. Rezakazemi, A. H. Mohammadi and S. Bhatia, Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane, J. Mol. Liq. 265 (2018), 53–68.10.1016/j.molliq.2018.05.078Search in Google Scholar

[2] M. Rezakazemi, S. Razavi, T. Mohammadi and A. G. Nazari, Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems, J. Membr. Sci. 379 (2011), 224–232.10.1016/j.memsci.2011.05.070Search in Google Scholar

[3] M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi and A. Pak, CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation, Chem. Eng. J. 168 (2011), 60–67.10.1016/j.cej.2010.12.034Search in Google Scholar

[4] M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi and A. Pak, CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor, Chem. Eng. J. 168 (2011), 1217–1226.10.1016/j.cej.2011.02.019Search in Google Scholar

[5] M. Rezakazemi, I. Heydari and Z. Zhang, Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas, J. CO2 Util. 18 (2017), 362–369.10.1016/j.jcou.2017.02.006Search in Google Scholar

[6] N. Hajilary and M. Rezakazemi, CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor, Int. J. Greenh. Gas Control 77 (2018), 88–95.10.1016/j.ijggc.2018.08.002Search in Google Scholar

[7] M. Rezakazemi, M. Darabi, E. Soroush and M. Mesbah, CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor, Sep. Purif. Technol. 210 (2019), 920–926.10.1016/j.seppur.2018.09.005Search in Google Scholar

[8] M. Rezakazemi, A. Azarafza, A. Dashti and S. Shirazian, Development of hybrid models for prediction of gas permeation through FS/POSS/PDMS nanocomposite membranes, Int. J. Hydrog. Energy 43 (2018), no. 36, 17283–17294.10.1016/j.ijhydene.2018.07.124Search in Google Scholar

[9] M. Rezakazemi, A. Dashti, M. Asghari and S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42 (2017), 15211–15225.10.1016/j.ijhydene.2017.04.044Search in Google Scholar

[10] M. Rezakazemi and T. Mohammadi, Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrog. Energy 38 (2013), 14035–14041.10.1016/j.ijhydene.2013.08.062Search in Google Scholar

[11] M. Rezakazemi, K. Shahidi and T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrog. Energy 37 (2012), 14576–14589.10.1016/j.ijhydene.2012.06.104Search in Google Scholar

[12] M. Rostamizadeh, M. Rezakazemi, K. Shahidi and T. Mohammadi, Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrog. Energy 38 (2013), 1128–1135.10.1016/j.ijhydene.2012.10.069Search in Google Scholar

[13] N. Hajilary, M. Rezakazemi and S. Shirazian, Biofuel types and membrane separation, Environ. Chem. Lett. (2018), DOI: https://doi.org/10.1007/s10311-018-0777-9.10.1007/s10311-018-0777-9Search in Google Scholar

[14] M. Rezakazemi, S. Shirazian and S. N. Ashrafizadeh, Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor, Desalination 285 (2012), 383–392.10.1016/j.desal.2011.10.030Search in Google Scholar

[15] M. Rezakazemi, A. Ghafarinazari, S. Shirazian and A. Khoshsima, Numerical modeling and optimization of wastewater treatment using porous polymeric membranes, Polym. Eng. Sci. 53 (2013), 1272–1278.10.1002/pen.23375Search in Google Scholar

[16] M. Rezakazemi, A. Dashti, H. Riasat Harami, N. Hajilari, and Inamuddin, Fouling-resistant membranes for water reuse, Environ. Chem. Lett. (2018), 1–49.10.1007/s10311-018-0717-8Search in Google Scholar

[17] M. Rezakazemi, A. Khajeh and M. Mesbah, Membrane filtration of wastewater from gas and oil production, Environ. Chem. Lett. 16 (2018), 367–388.10.1007/s10311-017-0693-4Search in Google Scholar

[18] M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Springer, Netherlands, Kluwer, Netherlands, Dordrecht, 1996.10.1007/978-94-009-1766-8Search in Google Scholar

[19] M. Rezakazemi, M. Sadrzadeh and T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci. 66 (2018), 1–41.10.1016/j.pecs.2017.11.002Search in Google Scholar

[20] M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail and T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions, Prog. Polym. Sci. 39 (2014), 817–861.10.1016/j.progpolymsci.2014.01.003Search in Google Scholar

[21] M. Rezakazemi, M. Sadrzadeh, T. Mohammadi and T. Matsuura, Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells, in: D. Inamuddin, A. Mohammad and A. M. Asiri (Eds.), Organic-Inorganic Composite Polymer Electrolyte Membranes, Springer International Publishing, Cham (2017), 311–325.10.1007/978-3-319-52739-0_11Search in Google Scholar

[22] M. Rezakazemi, K. Shahidi and T. Mohammadi, Synthetic PDMS composite membranes for pervaporation dehydration of ethanol, Desal. Water Treat. 54 (2014), 1–8.10.1080/19443994.2014.887036Search in Google Scholar

[23] M. Rezakazemi, A. Marjani and S. Shirazian, Organic solvent removal by pervaporation membrane technology: experimental and simulation, Environ. Sci. Pollut. Res. 25 (2018), no. 20, 19818–19825.10.1007/s11356-018-2155-3Search in Google Scholar PubMed

[24] M. Rezakazemi, CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system, Desalination 443 (2018), 323–332.10.1016/j.desal.2017.12.048Search in Google Scholar

[25] A. Mehdi, R. Nahid, R. Mashallah and S. Saeed, Simulation of nonporous polymeric membranes using CFD for bioethanol purification, Macromol. Theory Simul. 27 (2018), 1700084.10.1002/mats.201700084Search in Google Scholar

[26] A. Dashti, H. R. Harami and M. Rezakazemi, Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system, Int. J. Hydrog. Energy 43 (2018), 6614–6624.10.1016/j.ijhydene.2018.02.046Search in Google Scholar

[27] C. Cohen, G. B. Tanny and S. Prager, Diffusion-controlled formation of porous structures in ternary polymer systems, J. Polym. Sci., Polym. Phys. Ed. 17 (1979), 477–489.10.1002/pol.1979.180170312Search in Google Scholar

[28] A. J. McHugh and L. Yilmaz, The diffusion equations for polymer membrane formation in ternary systems, J. Polym. Sci., Polym. Phys. Ed. 23 (1985), 1271–1274.10.1002/pol.1985.180230619Search in Google Scholar

[29] H. Lee, W. B. Krantz and S.-T. Hwang, A model for wet-casting polymeric membranes incorporating nonequilibrium interfacial dynamics, vitrification and convection, J. Membr. Sci. 354 (2010), 74–85.10.1016/j.memsci.2010.02.066Search in Google Scholar

[30] C. S. Tsay and A. J. McHugh, Mass transfer modeling of asymmetric membrane formation by phase inversion, J. Polym. Sci., Part B, Polym. Phys. 28 (1990), 1327–1365.10.1002/polb.1990.090280810Search in Google Scholar

[31] A. J. Reuvers and C. A. Smolders, Formation of membranes by means of immersion precipitation – Part II. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water, J. Membr. Sci. 34 (1987), 67–86.10.1016/S0376-7388(00)80021-6Search in Google Scholar

[32] A. Sadeghi, H. Nazem, M. Rezakazemi and S. Shirazian, Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory–Huggins model, J. Mol. Liq. 263 (2018), 282–287.10.1016/j.molliq.2018.05.015Search in Google Scholar

[33] M. Rezakazemi, K. Shahidi and T. Mohammadi, Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane, Int. J. Hydrog. Energy 37 (2012), 17275–17284.10.1016/j.ijhydene.2012.08.109Search in Google Scholar

[34] P. Radovanovic, S. W. Thiel and S.-T. Hwang, Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation, J. Membr. Sci. 65 (1992), 213–229.10.1016/0376-7388(92)87024-RSearch in Google Scholar

[35] L.-P. Cheng, Y. S. Soh, A.-H. Dwan and C. C. Gryte, An improved model for mass transfer during the formation of polymeric membranes by the immersion-precipitation process, J. Polym. Sci., Part B, Polym. Phys. 32 (1994), 1413–1425.10.1002/polb.1994.090320813Search in Google Scholar

[36] G. R. Fernandes, J. C. Pinto and R. Nobrega, Modeling and simulation of the phase-inversion process during membrane preparation, J. Appl. Polym. Sci. 82 (2001), 3036–3051.10.1002/app.2159Search in Google Scholar

[37] M. Sadrzadeh, M. Rezakazemi and T. Mohammadi, Fundamentals and measurement techniques for gas transport in polymers, in: R. Wilson, Anil Kumar S. and S. C. George (Eds.), Transport Properties of Polymeric Membranes, Elsevier (2018), 391–423.10.1016/B978-0-12-809884-4.00019-7Search in Google Scholar

[38] S. S. Shojaie, W. B. Krantz and A. R. Greenberg, Dense polymer film and membrane formation via the dry-cast process part I. Model development, J. Membr. Sci. 94 (1994), 255–280.10.1016/0376-7388(93)E0228-CSearch in Google Scholar

[39] L. Keshavarz, M. A. Khansary and S. Shirazian, Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: Theoretical calculation and experimental validation, Polymer 73 (2015), 1–8.10.1016/j.polymer.2015.07.027Search in Google Scholar

[40] R. E. Kesting, Synthetic Polymeric Membranes: A Structural Perspective, 2nd ed., Wiley, New York, 1986.Search in Google Scholar

[41] S. S. Shojaie, W. B. Krantz and A. R. Greenberg, Dense polymer film and membrane formation via the dry-cast process part II. Model validation and morphological studies, J. Membr. Sci. 94 (1994), 281–298.10.1016/0376-7388(93)E0229-DSearch in Google Scholar

[42] B. Zhou, Simulations of polymeric membrane formation in 2D and 3D, in: Materials Science and Engineering, Massachusetts Institute of Technology (2006).Search in Google Scholar

Received: 2018-07-25
Revised: 2018-10-08
Accepted: 2018-10-19
Published Online: 2018-11-14
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2018-0042/html
Scroll to top button