Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 8, 2017

Design of All-optical Half-subtractor Circuit Device using 2-D Principle of Photonic Crystal Waveguides

  • Sandip Swarnakar EMAIL logo , Santosh Kumar and Sandeep Sharma

Abstract

A design of all-optical half-subtractor (AOHS) is presented based on two-dimensional (2-D) photonic crystal (PhC) waveguides without using optical amplifiers and nonlinear materials. It is an essential component of various photonic integrated circuits. The design of AOHS circuit is based on beam interference principle, using square lattice of Y-shaped and T-shaped waveguides with silicon dielectric rods in air substrate. It is validated through finite-difference time-domain and using MATLAB simulations.

References

1. Yablonovitch E. Inhibited spontaneous in solid-state physics and electronics. Phys Rev Lett 1987;58(20):2059–2062.10.1007/978-1-4615-1963-8_41Search in Google Scholar

2. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987;58(23):2486–2488.10.1103/PhysRevLett.58.2486Search in Google Scholar PubMed

3. Joannopoulos JD. Photonics crystals: putting a new twist on light. Nature (London) 1997;386:143–149.10.1038/386143a0Search in Google Scholar

4. Zhang X, Wang Y, Sun J, Liu D, Huang D. All-optical AND gate at 10 Gbit/s based on cascaded single-port coupled SOAs,”. Opt Express 2004;12(15):361–366.10.1364/OPEX.12.000361Search in Google Scholar

5. Jiang P, Hu X, Zhang J, Yang H, Gong Q. Ultra-fast-all-optical switching in MEH-PPV photonic crystals with resonantly enhanced nonlinearity. Appl Phys B 2010;99:187–190.10.1007/s00340-009-3795-2Search in Google Scholar

6. Zhang Y, Zhang Y, Li B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystal. Opt Express 2007;15(15):9287–9292.10.1364/OE.15.009287Search in Google Scholar PubMed

7. Fujisawa T, Koshiba M. All-optical logic gates based on nonlinear slot-waveguide couplers. J Opt Soc Am B 2006;23(4):684–691.10.1364/JOSAB.23.000684Search in Google Scholar

8. Ghadrdan M, Birjandi MA. Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt Quant Electron 2013;4:1027–1036.10.1007/s11082-013-9713-1Search in Google Scholar

9. Christina XS, Kabilan AP. Design of optical logic gates using self-collimated beams in 2D photonic crystal. Photon Sens 2012;2(2):173–179.10.1007/s13320-012-0054-7Search in Google Scholar

10. Liu W, Yang D, Shen G, Tian H, Ji Y. Design of ultra-compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt Laser Technol 2013;50:55–64.10.1016/j.optlastec.2012.12.030Search in Google Scholar

11. Fu Y, Hu X, Gong Q. Silicon photonic crystal all-optical logic gates. Phys Lett A 2013;377:329–333.10.1016/j.physleta.2012.11.034Search in Google Scholar

12. Shinya A, Mitsugi S, Tanabe T, Notomi M, Yokohama I. All-optical flip-flop circuit composed of coupled two-port resonant tunnelling filter in two-dimensional photonic crystal slab. Opt Express 2006;14(3):1230–1235.10.1364/OE.14.001230Search in Google Scholar PubMed

13. Abbasi A, Noshad M, Ranjbar R, Kheradmand R. Ultra compact and fast all-optical flipflop design in photonic crystal platform. Opt Commun 2012;285:5073–5078.10.1016/j.optcom.2012.06.095Search in Google Scholar

14. Geshiro TM, Kitamura T, Nishida K, Sawa S. All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J Quantum Electron 2002;38:37–46.10.1109/3.973317Search in Google Scholar

15. Wu YD. All-optical logic gates by using multi-branch waveguide structure with localized optical nonlinearity. IEEE J Sel Top Quantum Electron 2005;11:307–312.10.1109/JSTQE.2005.846534Search in Google Scholar

16. Wu YD, Shih TT, Chen MH. New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt Express 2008;16:248–257.10.1364/OE.16.000248Search in Google Scholar PubMed

17. Liu Q, Ouyang Z, Wu CJ, Liu CP, Wang JC. All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt Express 2008;16(23):18992.10.1364/OE.16.018992Search in Google Scholar

18. Chen CC, Chien HD, Luan PG. Photonic crystal beam splitters. App Opt 2004;43:6187–6190.10.1364/AO.43.006187Search in Google Scholar

19. Shinya KA, Tanabe T, Kuramochi E, Notomi M. All-optical switch and digital light processing using photonic crystals. NTT Tech Rev 2005;3:61–68.Search in Google Scholar

20. Asai T, Amemiya Y, Kosiba M. A photonic-crystal logic circuit based on the binary decision diagram. Proceeding of International Workshop on Photonic and Electromagnetic Crystal Structures, (Academic, Sendai, Japan), T4–14, 2000.Search in Google Scholar

21. Yamamoto T, Yoshida E, Nakazawa M. ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals. Electron Lett 1998;34(10):1013–1014.10.1049/el:19980712Search in Google Scholar

22. Fjelde T, Kloch A, Wolfson D, Dagens B, Coquelin A, Guillemot I, et al. Novel scheme for simple label-swapping employing XOR logic in integrated interferometric wavelength converter. IEEE Photonics Technol Lett 2001;13(7):750–752.10.1109/68.930436Search in Google Scholar

23. Wang JP, Robinson BS, Hamilton SA, Ippen EP. Demonstration of 40Gb/s packet routing using all-optical header processing. IEEE Photonics Technol Lett 2006;18(21):2275–2277.10.1109/LPT.2006.884727Search in Google Scholar

24. Zhang Y, Zhang Y, Li B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express 2007;15(15):9287–9292.10.1364/OE.15.009287Search in Google Scholar

25. Andalib P, Granpayeh N. All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J Opt Soc Am B 2009;26(1):10–16.10.1109/GROUP4.2008.4638134Search in Google Scholar

26. Zhu ZH, Ye WM, Ji JR, Yuan XD, Zen C. High contrast light by light switching and AND gate based on nonlinear photonic crystals. Opt Express 2006;14(5):1783–1788.10.1364/OE.14.001783Search in Google Scholar

27. Lee KY, Yang YC, Lin YJ, Lee WY, Lee CC, Wong SH. The designs of 4×2 encoder based on photonic crystals. Proc SPIE (Proceedings of OSA-IEEE Asia Communications and Photonics) 2009;7630:763001–763007.Search in Google Scholar

28. Soto FC, Martínez A, Garcia J, Ramos F, Sanchis P, Blasco J, et al. All-optical switching structure based on a photonic crystal directional coupler. Opt Express 2004;12:161–167.10.1364/OPEX.12.000161Search in Google Scholar

29. Rani A, Dewra S. Performance of bus and ring network topologies based on SOA bias current. J Opt Commun 2016.10.1515/joc-2016-0051Search in Google Scholar

30. Rani A, Dewra S. Investigation of 16×10 Gbps DWDM system based on optimized semiconductor optical amplifier. J Opt Commun 2016. DOI:10.1515/joc-2016-0029.10.1515/joc-2016-0029Search in Google Scholar

31. Rani A, Dewra S. Investigation of semiconductor optical amplifier for DWDM system with 50 GHz channel spacing. 2016:209–215. DOI:10.1007/978-81-322-2638-3_24.10.1007/978-81-322-2638-3_24Search in Google Scholar

32. Roden J, Gedney S. Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Tech Lett 2000;27:334.10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-ASearch in Google Scholar

33. Wu CJ, Liu CP, Ouyang Z. Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl Opt 2012;51(5):680–685.10.1364/AO.51.000680Search in Google Scholar

34. Jiang YC, Liu SB, Zhang HF, Kong XK. Realization of all-optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt Commun 2015;348:90–94.10.1016/j.optcom.2015.03.011Search in Google Scholar

35. Shaik EH, Rangaswamy N. Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt Quantum Electron 2016;48:1–15. DOI: 10.1007/811082-015-0279-y.10.1007/s11082-015-0279-ySearch in Google Scholar

Received: 2017-06-02
Accepted: 2017-07-20
Published Online: 2017-08-08
Published in Print: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2017-0083/html
Scroll to top button