Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2018

Tunable High Performance 16-Channel Demultiplexer on 2D Photonic Crystal Ring Resonator Operating at Telecom Wavelengths

  • S. Naghizade and S. M. Sattari-Esfahlan EMAIL logo

Abstract

Here, we proposed a high performance 16-channel optical demultiplexer using two-dimensional photonic crystal ring resonator for telecommunication systems. By plane wave expansion (PWE) method the photonic band gap (PBG) of proposed structure calculated. Then, with finite difference time domain (FDTD) method the performance parameters of designed two-dimensional photonic crystal demultiplexer are analyzed. It is found that the channel wavelength of wavelength-division multiplexing (WDM) is truly tuned by changing the structure parameters of the demultiplexer and position of rod. Output peaks located in the optical communication C-band and L-band with the transmission efficiency of 99 %. The demultiplexer exhibits high-quality factor of 5176, and spectral width of 0.3. Very low crosstalk values are between −19 dB and −90 dB where, device only occupies an area of 1708.65 µm2. The proposed compact 16-channel demultiplexer can find more applications for the ultra-compact WDM systems in highly integrated telecommunication circuits.

References

1. Danaie M, Kaatuzian H. Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct-Fundam Appl. 2011;9:70–81.10.1016/j.photonics.2010.10.002Search in Google Scholar

2. Rao W, Song Y, Liu M, Jin C. All-optical switch based on photonic crystal microcavity with multi-resonant modes. Optik. 2010;121:1934–36.10.1016/j.ijleo.2009.05.018Search in Google Scholar

3. Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt Express. 2005;13:2678.10.1364/OPEX.13.002678Search in Google Scholar

4. Mansouri-Birjandi MA, Moravvej-Farshi MK, Rostami A. Ultrafast lowthreshold all-optical switch implemented by arrays of ring resonators coupled to a Mach–Zehnder interferometer arm: based on 2D photonic crystals. Appl Opt. 2008;47:5041–50.10.1364/AO.47.005041Search in Google Scholar

5. Nozaki K, Kuramochi E, Shinya A, Notomi M. 25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities. Opt Express. 2014;22:14263.10.1364/OE.22.014263Search in Google Scholar PubMed

6. Chang K-D, Liu C-Y. Electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system. Opt Commun. 2014;316:10–16.10.1016/j.optcom.2013.11.044Search in Google Scholar

7. Esmaeili SA, Cherri AK. Photonic crystal-based all-optical arithmetic circuits without SOA-based switches. Optik. 2014;125:3710–13.10.1016/j.ijleo.2014.03.006Search in Google Scholar

8. Kaur S,. All optical data comparator and decoder using SOA-based Mach–Zehnder interferometer. Opt Int J Light Electron Opt. 2013;124:2650–53.10.1016/j.ijleo.2012.07.041Search in Google Scholar

9. Moniem TA. All optical active high decoder using integrated 2D square lattice photonic crystals. J Mod Opt. 2015;62:1643–49.10.1080/09500340.2015.1061061Search in Google Scholar

10. Liao Q-H, Fan H-M, Chen S-W, Wang T-B, Yu T-B, Huang Y-Z. The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators. Opt Commun. 2014;331:160–64.10.1016/j.optcom.2014.05.056Search in Google Scholar

11. Djavid M, Monifi F, Ghaffari A, Abrishamian MS. Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt Commun. 2008;281:4028–32.10.1016/j.optcom.2008.04.045Search in Google Scholar

12. Zhu ZH, Ye WM, Ji JR, Yuan XD, Zen C. Wavelength demultiplexers based on multimode interference effect in photonic crystals. Phys Lett A. 2008;372:2534–38.10.1016/j.physleta.2007.12.011Search in Google Scholar

13. Liu Y, Qin F, Meng Z-M, Zhou F, Mao Q-H, Li Z-Y. All-optical logic gates based on two dimensional low refractive-index nonlinear photonic crystal slabs. Opt Express. 2011;19:1945–53.10.1364/OE.19.001945Search in Google Scholar PubMed

14. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt Int J Light Electron Opt. 2014;125:5701–04.10.1016/j.ijleo.2014.06.013Search in Google Scholar

15. Tian Y, Liu Z, Ying T, Xiao H, Meng Y, Deng L, et al. Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators. 2018;7:333–337. DOI:10.1515/nanoph-2017-0071.Search in Google Scholar

16. Xu Q, Lipson M. All-optical logic based on silicon micro-ring resonators. Opt Express. 2007;15:924–29.10.1364/OE.15.000924Search in Google Scholar PubMed

17. Li L, Liu GQ. Photonic crystal ring resonator channel drop filter. Optik. 2012;124:2966–68.10.1016/j.ijleo.2012.09.012Search in Google Scholar

18. Naghizade S, Sattari-Esfahlan SM. Excellent quality factor ultra-compact optical communication filter on ring-shaped cavity. J Opt Commun. 2017. DOI:10.1515/joc-2017-0035.Search in Google Scholar

19. Shinya A, Mitsugi S, Kuramochi E, Notomi M. Ultra small multi-port channel drop filter in two dimensional photonic crystal on silicon-on-insulator substrate. Opt Express. 2006;14(25):12394–400.10.1364/OE.14.012394Search in Google Scholar PubMed

20. Mahmoud MY, Bassou G, Taalbi A, Chekroun ZM. Optical channel drop filter based on photonic crystal ring resonators. Opt Commun. 2012;285:368–72.10.1016/j.optcom.2011.09.068Search in Google Scholar

21. Naghizade S, Sattari-Esfahlan SM. Loss-less elliptical channel drop filter for WDM applications. J Opt Commun. 2017. DOI:10.1515/joc-2017-0088.Search in Google Scholar

22. Naghizade S, Sattari-Esfahlan SM. An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 2017. DOI:10.1515/joc-2017-0129.Search in Google Scholar

23. Chhipa MK, Radhouene M, Dikshit A, Robinson S, Suthar B. Novel compact optical channel drop filter for CWDM optical network applications. Int J. Photonics Opt Technol. 2016;2(4):26–29.Search in Google Scholar

24. Venkatachalam K, Robinson S, Umamaheswari S. Two dimensional photonic crystal based four channel demultiplexer for ITU.T.G 694.2 CWDM systems. Int J. Photonics Opt Technol. 2016;2(3):37–41.Search in Google Scholar

25. Djavid M, Saghirzadeh Darki B, Abrishamian MS. Photonic crystal based cross connect filters. Opt Commun. 2011;284:1424–28.10.1016/j.optcom.2010.10.057Search in Google Scholar

26. Chen W, Lou S, Wang L, Zou H, Lu W, Jian S. Switchable multi-wavelength fiber ring laser using a side-leakage photonic crystal fiber based filter. Opt Laser Technol. 2012;44:611–16.10.1016/j.optlastec.2011.09.007Search in Google Scholar

27. Jiang P, Ding C, Hu X, Gong Q. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals. Phys Lett A. 2007;363:332–36.10.1016/j.physleta.2006.11.008Search in Google Scholar

28. Ren H, Jiang C, Hu W, Gao M, Wang J. Design and analysis of two-dimensional photonic crystals channel filter. Opt Commun. 2006;266:342–48.10.1016/j.optcom.2006.03.019Search in Google Scholar

29. Kim H-T, Yu M. High-speed optical sensor interrogator with a silicon-ring-resonator-based thermally tunable filter. Opt Lett. 2017;42:1305–08.10.1364/OL.42.001305Search in Google Scholar PubMed

30. M.S. Rasras, et al. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators. J Lightwave Technol. 2009;27:2105–10.10.1109/JLT.2008.2007748Search in Google Scholar

31. Melloni A, Costa R, Monguzzi P, Martinelli M. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt Lett. 2003;28:1567–69.10.1364/OL.28.001567Search in Google Scholar

32. Long Y, Wang J. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Opt Express. 2015;23:17739–50.10.1364/OFC.2015.W2A.58Search in Google Scholar

33. Errando-Herranz C, Niklaus F, Stemme G, Gylfason K-B. Low-power microelectromechanically tunable silicon photonic ring resonator add–drop filter. Opt Lett. 2015;40:3556–59.10.1364/OL.40.003556Search in Google Scholar PubMed

34. Wang Y, Chen D, Zhang G, Wang J, Tao S. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt Commun. 2016;363:13–20.10.1016/j.optcom.2015.10.070Search in Google Scholar

35. Taalbi A, Bassou G, Mahmoud M-Y. New design of channel drop filters based on photonic crystal ring resonators. Optik. 2013;124:824–27.10.1016/j.ijleo.2012.01.045Search in Google Scholar

36. Qiang Z, Zhou W, Soref RA. Optical add-drop filters based on photonic crystal ring resonators. Opt Express. 2007;15:1823–31.10.1364/OE.15.001823Search in Google Scholar PubMed

37. Bendjelloul R, Bouchemat T, Bouchemat M. An optical channel drop filter based on 2D photonic crystal ring resonator. J Electromagn Waves and Appl. 2016;30:2402–10.10.1080/09205071.2016.1253508Search in Google Scholar

38. Djavid M, Abrishamian MS. Multi-channel drop filters using photonic crystal ring resonators. Optik. 2011;123:167–70.10.1016/j.ijleo.2011.04.001Search in Google Scholar

39. Venkatachalam K, Sriram Kumar D, Robinson S. Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photon Netw Commun. 2017;34:100–10.10.1007/s11107-016-0675-7Search in Google Scholar

40. Ghorbanpour H, Makouei S. 2-channel all optical demultiplexer based on photonic crystal ring resonator. Front Optoelectron. 2013;6:224–27.10.1007/s12200-013-0322-1Search in Google Scholar

41. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh- Kashtiban M. A novel proposal for all optical PhC based demultiplexers suitable for DWDM applications. Opt Quant Electron. 2013;45:1063–75.10.1007/s11082-013-9717-xSearch in Google Scholar

42. Birjandi MAM, Rakhshani MR. A new design of tunable four port wavelength demultiplexer by photonic crystals ring resonators. Optik. 2014;124:5923–26.10.1016/j.ijleo.2013.04.128Search in Google Scholar

43. Lu H, Liu X, Gong Y, Mao D, Wang L. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt Express. 2011;19:12885–90.10.1364/OE.19.012885Search in Google Scholar PubMed

44. Qing-Hua L, Hong-Ming F, Shu-Wen C, Tong-Biao W, Tian-Bao Y, Yong-Zhen H. The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators. Opt Commun. 2014;331:160–64.10.1016/j.optcom.2014.05.056Search in Google Scholar

45. Venkatachalam K, Sriram Kumar D, Robinson S. Performance analysis of 2D-photonic crystal based eight channel wavelength division demultiplexer. Optik. 2016;127:8819–26.10.1016/j.ijleo.2016.06.112Search in Google Scholar

46. Wu Y-D, Shih -T-T, Lee -J-J. High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications. Appl Opt. 2009;48:25/1.10.1364/AO.48.000F24Search in Google Scholar

47. Wu Y-D, Sgin -T-T, Lee -J-J. Proposal for a new dense wavelength division multiplexing filter based on two-dimensional photonic crystal ring resonator. Fiber and Integrated I Optic. 2012;31:369–82.10.1080/01468030.2012.742598Search in Google Scholar

48. Rakhshani MR, Mansouri-Birjandi MA. Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J Electromagn Waves Appl. 2012;26(13):1700–07.10.1080/09205071.2012.709927Search in Google Scholar

49. Zhang X, Liao Q, Yu T, Liu N, Huang Y. Novel ultra-compact wavelength division demultiplexer based on photonic band gap. Opt Commun. 2012;285:274–76.10.1016/j.optcom.2011.10.001Search in Google Scholar

50. Akosman AE, Mutlu M, Kurt H, Ozbay E. Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides. Opt Express. 2011;19(24):24129 38.10.1364/OE.19.024129Search in Google Scholar PubMed

51. Naghizade S, Sattari-Esfahlan SM. High-performance ultra-compact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw Commun. 2017. DOI:10.1007/s11107-017-0702-3.Search in Google Scholar

52. Niemi T, Frandsen LH, Hede KK, Harpøth A, Borel PI, Kristensen M. Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technol Lett. 2006;18:226–28.10.1109/LPT.2005.860001Search in Google Scholar

53. Khorshidahmad A, Kirk AG. Composite superprism photonic crystal demultiplexer: analysis and design. Opt Express. 2010;48:26518–28.10.1364/OE.18.020518Search in Google Scholar PubMed

54. Chung LW, Lee SL. Photonic crystal-based dual-band demultiplexers on silicon materials. Opt Quant Electron. 2007;39:677–86.10.1007/s11082-007-9118-0Search in Google Scholar

55. Mehdizadeh F, Soroosh M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw Commun. 2015. DOI:10.1007/s11107-015-0531-1.Search in Google Scholar

56. Venkatachalam. K, Sriram Kumar D, Robinson S. Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photon Netw Commun. 2016;34:100–10.10.1007/s11107-016-0675-7Search in Google Scholar

57. Talebzadeh R, Soroosh M. High quality complete coupling 4-channel demultiplexer based on photonic crystal ring resonators. Optoelectron Adv Mater. 2015;9(1 2):5 9.Search in Google Scholar

58. Rakhshani MR, Birjandi MAM. Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E. 2013;50:97–101.10.1016/j.physe.2013.03.003Search in Google Scholar

59. Bouamami S, Naoum R. Compact WDM demultiplexer for seven channels in photonic crystal. Optik. 2013;124:2373–75.10.1016/j.ijleo.2012.08.008Search in Google Scholar

60. Venkatachalam K, Sriram Kumar D, Robinson S. Investigation on modified quasi-square PCRR based demultiplexer for WDM applications. Opt and Quant Electron. 2016;48:393.10.1007/s11082-016-0666-zSearch in Google Scholar

61. Fallahi V, Seifouri M, Olyaee S, Alipour-Banaei H. Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt Rev. 2017;24:605–10.10.1007/s10043-017-0353-8Search in Google Scholar

62. Johnson SG, Joannopoulos JD. Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt Express. 2001;8:173–90.10.1364/OE.8.000173Search in Google Scholar PubMed

63. Gedney SD. Introduction to finite-difference time-domain (FDTD) method for electromagnetics. Lexington: Morgan and Claypool, 2006.Search in Google Scholar

64. Qiu M. Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. Appl Phys Lett. 2002;81:1163–65.10.1063/1.1500774Search in Google Scholar

Received: 2017-11-12
Accepted: 2018-01-04
Published Online: 2018-12-22
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2017-0199/html
Scroll to top button