Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 23, 2019

Length-based hydrodynamic fractionation of highly networked fibers in a mini-channel

  • Thomas Schmid EMAIL logo , Jakob D. Redlinger-Pohn and Stefan Radl

Abstract

Fractionation of cellulose fibers is performed within a circular mini-channel (diameter 7 mm) to realize a novel fractionation principle. We show that fractionation within a single-floc regime relies on the formation of a rigid network in cases where the crowding number is chosen to be greater than 60. Fractionation is performed for channel Reynolds numbers Re> 10,000, and unlike the situation in larger channels, fractionation is found to be relatively independent of Re. Experiments show a high dependency of the radial aperture velocity and aperture width on fractionation performance associated with fibers that are longer than 200 µm. By contrast, fibers shorter than 200 µm are only influenced by the volumetric flow rate through the aperture. Our results suggest that fibers smaller than 200 µm are mobile in the near wall region. Fibers longer than 200 µm are, dependent on their length, drawn out of the network by hydrodynamic forces acting on them as a result of the radial fluid velocity caused by the accept flow through the aperture. Our results support a novel fractionation hypothesis that is in contrast to previous findings, which were based on dilute flows and were demonstrated in channels having a larger size.

Funding statement: The authors gratefully acknowledge the industrial partners Sappi Austria Produktions-GmbH & Co KG, Zellstoff Pöls AG and Mondi Frantschach GmbH, and the Competence Centers for Excellent Technologies (COMET), promoted by BMVIT, BMDW, Styria and Carinthia and managed by FFG, for their financial support of the K-project FLIPPR² (Future Lignin and Pulp Processing Research – PROCESS INTEGRATION).

Acknowledgments

We gratefully acknowledge the help of Gregor Schaub in performing pressure drop experiments.

  1. Conflict of interest: The authors declare no conflicts of interest.

Appendix A Experimental data

Table A.1

Experimental data, i. e. fiber sort, feed flow rate, accept flow rate, Reynolds number, accept ratio, slot width, radial fractionation velocity, feed consistency and corresponding crowding number for investigation of network effects on fractionation.

Exp-no.PulpV˙FeedV˙AcceptReϕ+suFracCfeedNCW
(ml/min)(ml/min)(%)(mm)(m/s)(%)
70-1CP6,12612318,5722.01.62.0E-020.4962
70-2CP6,12812118,5762.01.62.0E-020.5873
70-3CP6,05112318,3422.01.62.0E-020.6785
139-0CP6,10011918,4922.01.61.9E-020.2127
140-0CP6,06212118,3772.01.62.0E-020.0810
141-0VP15,98812218,1522.01.62.0E-020.2919
142-0VP26,16811518,6981.91.61.9E-020.4055
144-0VP36,11112118,5252.01.62.0E-020.3591
Table A.2

Experimental data, i. e. fiber sort, feed flow rate, accept flow rate, Reynolds number, accept ratio, slot width, radial fractionation velocity, feed consistency and corresponding crowding number for investigation of Reynolds number on fractionation at constant gap width of s1=1.6mm.

Exp-no.PulpV˙FeedV˙AcceptReϕ+suFracCfeedNCW
(ml/min)(ml/min)(%](mm)(m/s)(%)
62-1CP8,4608125,6471.01.61.3E-020.4760
62-2CP8,5508625,9201.01.61.4E-020.6380
62-3CP8,4098425,4921.01.61.4E-020.5063
63-1CP8,40017325,4652.11.62.8E-020.6481
63-2CP8,41018325,4942.21.63.0E-020.6583
63-3CP8,52617125,8462.01.62.8E-020.5772
64-1CP8,40034825,4654.11.65.6E-020.4962
64-2CP8,40033525,4654.01.65.4E-020.7697
64-3CP8,35234325,3184.11.65.6E-020.6279
66-1CP7,41430622,4774.11.65.0E-020.5671
66-2CP7,40329022,4413.91.64.7E-020.5367
66-3CP7,42429722,5064.01.64.8E-020.5772
67-1CP7,45715122,6062.01.62.4E-020.5975
67-2CP7,35414422,2942.01.62.3E-020.5569
67-3CP7,42514822,5092.01.62.4E-020.5469
68-1CP7,4577522,6061.01.61.2E-020.5671
68-2CP7,4056922,4500.91.61.1E-020.6178
68-3CP7,3977522,4251.01.61.2E-020.6076
69-1CP6,1306318,5841.01.61.0E-020.5165
69-2CP6,1036218,5011.01.61.0E-020.6279
69-3CP6,1016618,4961.11.61.1E-020.6380
70-1CP6,12612318,5722.01.62.0E-020.4962
70-2CP6,12812118,5762.01.62.0E-020.5873
70-3CP6,05112318,3422.01.62.0E-020.6785
71-1CP6,12625418,5724.11.64.1E-020.4963
71-2CP6,08224318,4384.01.63.9E-020.5368
71-3CP6,11124318,5254.01.63.9E-020.6683
72-1CP4,68719114,2084.11.63.1E-020.5974
72-2CP4,73718614,3603.91.63.0E-020.6379
72-3CP4,87619614,7834.01.63.2E-020.6380
73-1CP4,7189314,3032.01.61.5E-020.4861
73-2CP4,8449114,6841.91.61.5E-020.5469
73-3CP4,7749614,4722.01.61.5E-020.4860
74-1CP4,7004614,2481.01.67.5E-030.5873
74-2CP4,8054614,5680.91.67.4E-030.5975
74-3CP4,7604814,4291.01.67.8E-030.5975
75-1CP3,8263811,5991.01.66.2E-030.5671
75-2CP3,7363811,3261.01.66.2E-030.5469
75-3CP3,7994211,5161.11.66.8E-030.5165
76-1CP3,8267811,5992.01.61.3E-020.5064
76-2CP3,8877911,7822.01.61.3E-020.5772
76-3CP3,9558111,9902.11.61.3E-020.4456
77-1CP3,83116411,6134.31.62.7E-020.4557
77-2CP3,81015911,5514.21.62.6E-020.5165
77-3CP3,79414911,5013.91.62.4E-020.4759
Table A.3

Experimental data, i. e. fiber sort, feed flow rate, accept flow rate, Reynolds number, accept ratio, slot width, radial fractionation velocity, feed consistency and corresponding crowding number for investigation of hydrodynamic process parameters on fractionation at variable gap width of s1=1.6mm, s2=2.6mm and s3=0.6mm and s4=0.3mm.

Exp-no.PulpV˙FeedV˙AcceptReϕ+suFracCfeedNCW
(ml/min)(ml/min)(%)(mm)(m/s)(%)
69-1CP6,1306318,5841.01.61.02E-020.5165
69-2CP6,1036218,5011.01.61.00E-020.6279
69-3CP6,1016618,4961.11.61.06E-020.6380
70-1CP6,12612318,5722.01.61.99E-020.4962
70-2CP6,12812118,5762.01.61.96E-020.5873
70-3CP6,05112318,3422.01.61.99E-020.6785
71-1CP6,12625418,5724.11.64.11E-020.4963
71-2CP6,08224318,4384.01.63.93E-020.5368
71-3CP6,11124318,5254.01.63.93E-020.6683
112-1CP6,1076518,5151.10.62.80E-020.5367
112-2CP6,1206018,5531.00.62.61E-020.5266
112-3CP6,0926218,4681.00.62.66E-020.6582
113-1CP6,11412018,5342.00.65.17E-020.7291
113-2CP6,07312718,4122.10.65.51E-020.5672
113-3CP6,07312118,4112.00.65.23E-020.7089
114-1CP6,16524618,6904.00.61.06E-010.7494
114-2CP6,13724418,6034.00.61.05E-010.6481
114-3CP6,02524018,2664.00.61.04E-010.6279
115-1CP6,08052218,4328.60.62.26E-010.65483
115-2CP6,08749218,4528.10.62.13E-010.6380
115-3CP6,18848918,7587.90.62.11E-010.5874
116-1CP6,20683418,81413.40.63.60E-010.62679
116-2CP6,21580218,84012.90.63.46E-010.5874
116-3CP6,20278018,80212.60.63.37E-010.6886
117-1CP6,1566218,6631.02.66.15E-030.6278
117-2CP6,0876218,4521.02.66.19E-030.5266
117-3CP6,1606418,6751.02.66.40E-030.6987
118-1CP6,13812818,6062.12.61.28E-020.6683
118-2CP6,05411918,3532.02.61.18E-020.5469
118-3CP6,08312318,4412.02.61.23E-020.6177
119-1CP6,10424218,5054.02.62.42E-020.5266
119-2CP6,09724018,4833.92.62.39E-020.82104
119-3CP6,07424818,4144.12.62.47E-020.7089
120-1CP6,07648418,4198.02.64.82E-020.6279
120-2CP6,09450018,4748.22.64.98E-020.5266
120-3CP6,11246118,5287.52.64.60E-020.6684
121-1CP6,02580318,26413.32.68.01E-020.63180
121-2CP6,14980118,63913.02.67.98E-020.676
121-3CP6,19280118,77112.92.67.98E-020.5469
122-1CP6,1713018,7060.50.61.30E-020.4861
122-2CP6,1203118,5530.50.61.34E-020.6583
122-3CP6,1643118,6870.50.61.32E-020.5164
145-1CP6,09912018,4892.00.31.15E-010.74294
145-2CP6,13312418,5932.00.31.19E-010.7797
145-3CP6,15312618,6532.10.31.21E-010.5670
146-1CP6,1265718,5720.90.35.51E-020.789
146-2CP6,0486018,3351.00.35.76E-020.7291
146-3CP6,1166018,5421.00.35.74E-020.5570
147-1CP6,12924718,5804.00.32.37E-010.61578
147-2CP6,01224518,2264.10.32.35E-010.6684
147-3CP6,09724318,4834.00.32.33E-010.6380
150-1CP6,13046118,5857.50.34.43E-010.6279
150-2CP6,07347918,4107.90.34.60E-010.6988
150-3CP6,11047918,5237.80.34.60E-010.676
151-1CP6,13576318,59812.40.37.32E-010.5873
151-2CP6,08572018,44611.80.36.91E-010.6582
151-3CP6,16472918,68711.80.36.99E-010.6177
157-1CP6,11149118,5278.01.67.96E-020.5874
157-2CP6,08847418,4577.81.67.69E-020.5874
157-3CP6,08847818,4547.91.67.75E-020.5873
158-1CP6,17673318,72211.91.61.19E-010.676
158-2CP6,09275018,46812.31.61.21E-010.6381
158-3CP6,00074118,18912.31.61.20E-010.7797

References

Abbasi Hoseini, A., Lundell, F., Andersson, H.I. (2015) Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. Int. J. Multiph. Flow 76:13–21.10.1016/j.ijmultiphaseflow.2015.05.015Search in Google Scholar

Bergström, R. Fibre Flow Mechanisms. Royal Institute of Technology, Stockholm, 2005.Search in Google Scholar

Cotas, C., Branco, B., Asendrych, D., Garcia, F., Faia, P., Rasteiro, M.G. (2017) Experimental study and computational fluid dynamics modeling of pulp suspensions flow in a pipe. J. Fluids Eng. 139(7):071303.10.1115/1.4036165Search in Google Scholar

DIN 66142-3:1982-09 (n. d.) Representing and characterizing the separation of disperse materials; Selection and determination of parameters for industrial separation processes.Search in Google Scholar

Duffy, G.G. (2003) A new method of fibre fractionation. In: Appita Annu. Conf. Exhib., Melbourne. pp. 453–458.Search in Google Scholar

Duffy, G.G., Abdullah, L. (2003) Fibre suspension flow in small diameter pipes. Appita J. 56(4):290–295.Search in Google Scholar

Duffy, G.G., Ramachandra, S. (2005) Validation of flow mechanisms of fibre suspensions in small diameter pipes. Appita J. 58(5):374–377.Search in Google Scholar

Duffy, G.G., Titchener, A.L., Lee, P.F.W., Moller, K. (1976) The mechanisms of flow of pulp suspensions in pipes. Appita J. 29(5):363–370.Search in Google Scholar

Fock, H., Claesson, J., Rasmuson, A., Wikström, T. (2011) Near wall effects in the plug flow of pulp suspensions. Can. J. Chem. Eng. 89(5):1207–1216.10.1002/cjce.20471Search in Google Scholar

Fock, H., Rasmuson, A. (2008) Near wall studies of pulp suspension flow using PIV. Nord. Pulp Pap. Res. J. 23(1):120–125.10.3183/npprj-2008-23-01-p120-125Search in Google Scholar

Forgacs, O.L., Robertson, A.A., Mason, S.G. (1958) The hydrodynamic behaviour of paper-making fibres. Pulp Pap. Mag. Can. 117–128.Search in Google Scholar

Gooding, R.W. The Passage of Fibres Through Slots in Pulp Screening. University of British Columbia, 1986.Search in Google Scholar

Gooding, R.W., Kerekes, R.J., Salcudean, M. (2001) The flow resistance of slotted apertures in pulp screens. In: 12th Fundam. Res. Symp.Search in Google Scholar

Haavisto, S., Cardona, M.J., Salmela, J., Powell, R.L., McCarthy, M.J., Kataja, M., Koponen, A.I. (2017) Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry. Exp. Fluids 58(11):1–13.10.1007/s00348-017-2440-9Search in Google Scholar

Hubbe, M.A. (2007) Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2(2):296–331.10.15376/biores.2.2.296-331Search in Google Scholar

Jäsberg, A. Flow Behaviour of Fibre Suspension in Straight Pipes: New Experimental Techniques and Multiphase Modeling. University of Jyväskylä, 2007.Search in Google Scholar

Jäsberg, A., Koponen, A., Kataja, M., Timonen, J. (2000) Hydrodynamical forces acting on particles in a two-dimensional flow near a solid wall. Comput. Phys. Commun. 129(1):196–206.10.1016/S0010-4655(00)00107-7Search in Google Scholar

Karinkanta, P., Laitinen, O. (2017) Use of tube flow fractionation in wood powder characterisation. Biomass Bioenergy 99:122–138.10.1016/j.biombioe.2017.02.011Search in Google Scholar

Kerekes, R.J., Schell, C.J. (1992) Characterization of fibre flocculation regimes by a crowding factor. J. Pulp Pap. Sci. 18(1):32–38.Search in Google Scholar

König, J. Experimental Study of Separation of Fines from Fiber Suspensions with Hydrodynamic Filtration. University of Technology Graz, 2016.Search in Google Scholar

Kumar, A. Passage of Fibres Through Screen Apertures. University of British Columbia, 1991.Search in Google Scholar

Laitinen, O., Kemppainen, K., Stoor, T., Niinimäki, J. (2011) Fractionation of pulp and paper particles selectively by size. BioResources 6(1):672–685.10.15376/biores.6.1.672-685Search in Google Scholar

Madani, A. Fractionation of Particle Suspensions in a Viscoplastic Fluid: Towards a Novel Process. University of British Columbia, 2011.Search in Google Scholar

Martinez, D.M., Buckley, K., Lindström, A., Thiruvengadaswamy, R., Olson, J.A., Ruth, T.J., Kerekes, R.J. (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Sci. Papermak. 12th Fundam. Res. Symp. 16 (September 2001). pp. 225–254.Search in Google Scholar

Mason, S.G. (1950) The flocculation of pulp suspensions and the formation of paper. Tappi J. 33(9):440–444.Search in Google Scholar

Medhi, B.J., Ashok Kumar, A., Singh, A. (2011) Apparent wall slip velocity measurements in free surface flow of concentrated suspensions. Int. J. Multiph. Flow 37(6):609–619.10.1016/j.ijmultiphaseflow.2011.03.006Search in Google Scholar

Olson, J.A. The Effect of Fibre Length on Passage Through Narrow Apertures. University of British Columbia, 1996.Search in Google Scholar

Olson, J.A. (2001) Fibre length fractionation caused by pulp screening, slotted screen plates. J. Pulp Pap. Sci. 27(8):255–261.Search in Google Scholar

Olson, J.A., Wherrett, G. (1998) A model of fibre fractionation by slotted screen apertures. J. Pulp Pap. Sci. 24(12):398–403.Search in Google Scholar

Pettersson, A.J., Wikström, T., Rasmuson, A. (2006) Near wall studies of pulp suspension flow using LDA. Can. J. Chem. Eng. 84:422–430 (August).10.1002/cjce.5450840403Search in Google Scholar

Redlinger-Pohn, J.D., Bauer, W., Radl, S. (2017a) Fractionation of fibre pulp in a hydrodynamic fractionation device: influence of reynolds number and accept flow rate. In: Trans. 16Th Fundam. Res. Symp. (Oxford, September 2017). pp. 209–228.Search in Google Scholar

Redlinger-Pohn, J.D., König, J., Radl, S. (2017b) Length-selective separation of cellulose fibres by hydrodynamic fractionation. Chem. Eng. Res. Des. 126:54–66 (Institution of Chemical Engineers).10.1016/j.cherd.2017.08.001Search in Google Scholar

Robertson, A.A., Mason, S.G. (1957) The flow characteristics of dilute fiber suspensions. Tappi J. 40(5):326–334.Search in Google Scholar

Sha, J., Nikbakht, A., Wang, C., Zhang, H., Olson, J. (2015) The effect of consistency and freeness on the yield stress of chemical pulp fibre suspensions. BioResources 10(3):4287–4299.10.15376/biores.10.3.4287-4299Search in Google Scholar

Soszynski, R.M., Kerekes, R.J. (1988) Elastic interlocking of nylon fibers suspended in liquid. Part 2. Process of interlocking. Nord. Pulp Pap. Res. J. 3(4):180–184.10.3183/npprj-1988-03-04-p180-184Search in Google Scholar

Steenberg, B., Wahren, D. (1960) Concentration gradients in boundary layers of streaming fibre suspensions. Sven. Papp.tidn. 63(11):347–355.Search in Google Scholar

Tamura, A., Sugaya, S., Yamada, M., Seki, M. (2011) Tilted-branch hydrodynamic filtration for length-dependent sorting of rod-like particles. In: 15th Int. Conf. Miniaturized Syst. Chem. Life Sci. (c). pp. 1343–1345.Search in Google Scholar

Vollmer, H., Fredlund, M., Grundström, K.-J. (2001) Characterization of fractionation equipment. In: Ecopapertech Conf. 3. pp. 27–35.Search in Google Scholar

Walmsley, M., Atkins, M. (2003) Comparing fibre length fractionation of a laboratory flow channel to an industrial pressure screen. In: Proc. 57th Appita Annu. Gen. Conf. Exhib. pp. 369–376.Search in Google Scholar

Weber, A.P., Legenhausen, K. (2014) Characterization of a classification or separation process. Ullmann’s Encycl. Ind. Chem. pp. 1–11.10.1002/14356007.b02_02.pub3Search in Google Scholar

Received: 2018-12-17
Accepted: 2019-03-03
Published Online: 2019-03-23
Published in Print: 2019-05-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/npprj-2018-0086/html
Scroll to top button