Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access January 1, 2019

Autonomy in surgical robots and its meaningful human control

  • Fanny Ficuciello EMAIL logo , Guglielmo Tamburrini , Alberto Arezzo , Luigi Villani and Bruno Siciliano

Abstract

This article focuses on ethical issues raised by increasing levels of autonomy for surgical robots. These ethical issues are explored mainly by reference to state-ofart case studies and imminent advances in Minimally Invasive Surgery (MIS) and Microsurgery. In both area, surgicalworkspace is limited and the required precision is high. For this reason, increasing levels of robotic autonomy can make a significant difference there, and ethically justified control sharing between humans and robots must be introduced. In particular, from a responsibility and accountability perspective suitable policies for theMeaningfulHuman Control (MHC) of increasingly autonomous surgical robots are proposed. It is highlighted how MHC should be modulated in accordance with various levels of autonomy for MIS and Microsurgery robots. Moreover, finer MHC distinctions are introduced to deal with contextual conditions concerning e.g. soft or rigid anatomical environments.

References

[1] N. Bhuta, S. Beck, R. Geiß, H.-Y. Liu, C. Kreß, Autonomous Weapons Systems, Law, Ethics, Policy, Cambridge University Press, 2016Search in Google Scholar

[2] M. Maurer, J. C. Gerdes, B. Lenz, H. Winner, Autonomes Fahren: Technische, rechtliche und gesellschaftliche Aspekte, Springer Verlag, Berlin Heidelberg, Germany, 201510.1007/978-3-662-45854-9Search in Google Scholar

[3] G.-Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E. Dupont, et al., Medical robotics - regulatory, ethical, and legal considerations for increasing levels of autonomy, Science Robotics, 2017, 2(4), DOI: 10.1126/scirobotics.aam863810.1126/scirobotics.aam8638Search in Google Scholar PubMed

[4] M. Yip, N. Das, Robot autonomy for surgery, CoRR, 2017, http: //arxiv.org/abs/1707.03080Search in Google Scholar

[5] Structuring debate on autonomous weapons systems, Briefing Paper, Article 36, November 2013, http://www.article36.org/wp-content/uploads/2013/11/Autonomous-weapons-memofor-CCW.pdfSearch in Google Scholar

[6] F. Santoni de Sio, J. van den Hoven, Meaningful human control over autonomous systems: A philosophical account, Frontiers in Robotics and AI, 2018, 5, Art. 15, DOI: 10.3389/frobt.2018.0001510.3389/frobt.2018.00015Search in Google Scholar PubMed PubMed Central

[7] Da Vinci research xi surgical system web page, https:intuitivesurgical.com/products/da-vinci-xi/Search in Google Scholar

[8] S. Atallah, F. Quinteros, B. Martin-Perez, S. Larach, Robotic transanal surgery for local excision of rectal neoplasms, Journal of Robotic Surgery, 2014, 8(2), 193-19410.1007/s11701-014-0463-2Search in Google Scholar PubMed

[9] E. Vander Poorten, L. Esteveny, A. Gijbels, B. Rosa, L. Schoevaerdts, K. Willekens, et al., Use case for european robotics in ophthalmologic micro-surgery, In: Proceedings of the 5th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Brussels, Belgium, 10-12 September 2015, 78-80Search in Google Scholar

[10] S. Hirche,M. Buss, Human-oriented control for haptic teleoperation, In: Proceedings of the IEEE, 2012, 100(3), 623-64710.1109/JPROC.2011.2175150Search in Google Scholar

[11] J. van den Berg, S. Miller, D. Duckworth, H. Hu, A.Wan, X. Y. Fu, et al., Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations, In: 2010 IEEE International Conference on Robotics and Automation,May 2010, 2074-208110.1109/ROBOT.2010.5509621Search in Google Scholar

[12] A.Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, et al., Learning by observation for surgical subtasks: Multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms, In: 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, 1202-120910.1109/ICRA.2015.7139344Search in Google Scholar

[13] C. E. Reiley, E. Plaku, G. D. Hager, Motion generation of robotic surgical tasks: Learning from expert demonstrations, In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Aug 2010, 967-97010.1109/IEMBS.2010.5627594Search in Google Scholar PubMed

[14] Y. Kassahun, B. Yu, A. T. Tibebu, D. Stoyanov, S. Giannarou, J. H. Metzen, E. Vander Poorten, Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions, International Journal of Computer Assisted Radiology and Surgery, 2015, 11(4), 553-56810.1007/s11548-015-1305-zSearch in Google Scholar PubMed

[15] B. C. Becker, R. A. MacLachlan, G. D. Hager, C. N. Riviere, Handheld micromanipulation with vision-based virtual fixtures, In: 2011 IEEE International Conference on Robotics and Automation, May 2011, 4127-413210.1109/ICRA.2011.5980345Search in Google Scholar PubMed PubMed Central

[16] D. Aarno, S. Ekvall, D. Kragic, Adaptive virtual fixtures for machine-assisted teleoperation tasks, In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, April 2005, 1139-1144Search in Google Scholar

[17] Z. Pezzementi, A. M. Okamura, G. D. Hager, Dynamic guidance with pseudoadmittance virtual fixtures, In: Proceedings 2007 IEEE International Conference on Robotics and Automation, April 2007, 1761-176710.1109/ROBOT.2007.363577Search in Google Scholar

[18] A. R. Ferreres, M. Patti, Ethical issues in the introduction of new technologies: From mis to poem, World Journal of Surgery, 2015, 39(7), 1642-164810.1007/s00268-015-3067-8Search in Google Scholar PubMed

[19] Z. Chen, A. Malpani, P. Chalasani, A. Deguet, S. S. Vedula, P. Kazanzides, R. H. Taylor, Virtual fixture assistance for needle passing and knot tying, In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2016, 2343-235010.1109/IROS.2016.7759365Search in Google Scholar

[20] S. A. Bowyer, B. L. Davies, F. Rodriguez y Baena. Active constraints/virtual fixtures: A survey. IEEE Transactions on Robotics, 2014, 30(1), 138-15710.1109/TRO.2013.2283410Search in Google Scholar

[21] S. Iyer, T. Looi, J. Drake, A single arm, single camera system for automated suturing, In: 2013 IEEE International Conference on Robotics and Automation, May 2013, 239-24410.1109/ICRA.2013.6630582Search in Google Scholar

[22] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, K. Goldberg, Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization, In: 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, 4178-418510.1109/ICRA.2016.7487611Search in Google Scholar

[23] R. C. Jackson, M. C. Çavusoglu, Needle path planning for autonomous robotic surgical suturing, In: 2013 IEEE International Conference on Robotics and Automation,May 2013, 1669-167510.1109/ICRA.2013.6630794Search in Google Scholar PubMed PubMed Central

[24] A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, P. C. W. Kim, Supervised autonomous robotic soft tissue surgery, Science Translational Medicine, 2016, 8, 337-36410.1126/scitranslmed.aad9398Search in Google Scholar PubMed

[25] M. Hoeckelmann, I. J. Rudas, P. Fiorini, F. Kirchner, T. Haidegger, Current capabilities and development potential in surgical robotics, International Journal of Advanced Robotic Systems, 2015, 12(5), 6110.5772/60133Search in Google Scholar

[26] M. Jakopec, S. J. Harris, F. Rodriguez y Baena, P. Gomes, B. L. Davies, Acrobot: a "hands-on" robot for total knee replacement surgery, In: Proceedings of the 7th International Workshop on Advanced Motion Control, 2002, 116-120Search in Google Scholar

[27] B. Hagag, R. Abovitz, H. Kang, B. Schmitz, M. Conditt. Surgical Robotics, chapter RIO: Robotic-Arm Interactive Orthopedic System MAKOplasty: User Interactive Haptic Orthopedic Robotics, Springer, Boston, MA, 201110.1007/978-1-4419-1126-1_10Search in Google Scholar

[28] N. A. Netravali, M. Börner,W. L. Bargar, Computer-AssistedMusculoskeletal Surgery, chapter The Use of ROBODOC in Total Hip and Knee Arthroplasty, Springer, Cham, 201610.1007/978-3-319-12943-3_16Search in Google Scholar

[29] S. Dieterich, I. C. Gibbs, The cyberknife in clinical use: Current roles, future expectations, Frontiers of Radiation Therapy and Oncology, 2011, 43, 181-19410.1159/000322423Search in Google Scholar PubMed

[30] T. Varma, P. Eldridge, Use of the neuromate stereotactic robot in a frameless mode for functional neurosurgery, The International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2, 107-11310.1002/rcs.88Search in Google Scholar PubMed

[31] W. L. Bargar, A. Bauer, M. Bfrner, Primary and revision total hip replacement using the robodoc system, Clinical Orthopaedics and Related Research, 1998, 354, 82-9110.1097/00003086-199809000-00011Search in Google Scholar PubMed

[32] S. Nishihara, N. Sugano, T. Nishii, H. Miki, N. Nakamura, H. Yoshikawa, Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty, The Journal of Arthroplasty, 2006, 21, 957-96610.1016/j.arth.2006.01.001Search in Google Scholar PubMed

[33] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, K. M. Konstantinidis. Evolution of autonomous and semiautonomous robotic surgical systems: a review of the literature, The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(4), 375-39210.1002/rcs.408Search in Google Scholar PubMed

[34] M.A. Poumellec, R. Foissac, M. Cegarra-Escolano, E. Barranger, T. Ihrai, Surgical treatment of secondary lymphedema of the upper limb by stepped microsurgical lymphaticovenous anastomoses, Breast Cancer Research and Treatment, 2017, 162, 219-22410.1007/s10549-017-4110-2Search in Google Scholar PubMed

[35] J. M. Sabino, J. Slater, I. L. Valerio, Plastic surgery challenges in war wounded I: Flap-based extremity reconstruction, Advances in Wound Care, 2016, 5(9), 403-41110.1089/wound.2015.0656Search in Google Scholar PubMed PubMed Central

[36] I. Ahmadi, P. Herle, G. Miller, D. J. Hunter-Smith, J. Leong, W. M. Rozen, End-to-end versus end-to-side microvascular anastomosis: A meta-analysis of free flap outcomes, Journal of Reconstructive Microsurgery, 2017, 33(6), 402-41110.1055/s-0037-1599099Search in Google Scholar PubMed

[37] A. Ebrahimi, M. H. Kalantar Motamedi, A. Ebrahimi, M. Kazemi, A. Shams, H. Hashemzadeh, Lip reconstruction after tumor ablation, World Journal of Plastic Surgery, 2016, 5(1),15-25Search in Google Scholar

[38] S. Safavi-Abbasi, M. Y. Kalani, B. Frock, H. Sun, K. Yagmurlu, F. Moron, et al., Techniques and outcomes of microsurgical management of ruptured and unruptured fusiform cerebral aneurysms. Journal of Neurosurgery, 2017, 127(6), 1353-136010.3171/2016.9.JNS161165Search in Google Scholar PubMed

[39] C. F. Lee, J. C. Lu, A. Zidan, C. S. Lee, T. H. Wu, K. M. Chan, W. C. Lee, Microscope-assisted hepatic artery reconstruction in adult living donor liver transplantation - a review of 325 consecutive cases in a single center, Clinical Transplantation, 2017, 31(2)10.1111/ctr.12879Search in Google Scholar PubMed

[40] D. Minckler, Microinvasive glaucoma surgery: A new era in therapy, Clinical and Experimental Ophthalmology, 2016, 44(7), 543-54410.1111/ceo.12815Search in Google Scholar PubMed

[41] M. R. Kesting, S. Koerdt, N. Rommel, T. Mücke, K. D. Wolff, C. P. Nobis, et al., Classification of orbital exenteration and reconstruction, Journal of Cranio-Maxillo-Facial Surgery, 2017, 45(4), 467-47310.1016/j.jcms.2017.01.003Search in Google Scholar PubMed

[42] A. Gijbels, E. B. Vander Poorten, P. Stalmans, D. Reynaerts, Development and experimental validation of force sensing needle for robotically assisted retinal vein cannulations, In: IEEE International Conference on Robotics and Automation, Seattle, Washingon, 26-30 May 2015, 2270-227610.1109/ICRA.2015.7139500Search in Google Scholar

[43] G. C. Lim, F. C. Holsinger, R. J. Li, Transoral endoscopic head and neck surgery: The contemporary treatment of head and neck cancer, Hematology/Oncology Clinics of North America, 2015, 29(6), 1075-109210.1016/j.hoc.2015.08.001Search in Google Scholar PubMed

[44] C. Suárez, J. P. Rodrigo, Transoral microsurgery for treatment of laryngeal and pharyngeal cancers, Current Oncology Reports, 2013, 15(2),134-14310.1007/s11912-012-0286-0Search in Google Scholar PubMed

[45] J. S. Brown, D. Lowe, A. Kanatas, A. Schache,Mandibular reconstructionwith vascularised bone flaps: A systematic review over 25 years, British Journal of Oral andMaxillofacial Surgery, 2017, 55(2), 113-12610.1016/j.bjoms.2016.12.010Search in Google Scholar PubMed

[46] Q. Qassemyar, P. Aguilar, S. Temam, F. Kolb, P. Gorphe, The thin ALT perforator flap for oropharyngeal robotic-assisted reconstruction, Annales de Chirurgie Plastique Esthétique, 2017, 62(1), 1-710.1016/j.anplas.2016.11.003Search in Google Scholar PubMed

[47] F. M. Leclère, V. Casoli, Composite neuromusculofasciocutaneous triceps brachii free flap for complex foot reconstructive surgery, Hand Surgery & Rehabilitation, 2016, 35, 148-15210.1016/j.hansur.2015.12.010Search in Google Scholar PubMed

[48] H. Vester, S. Deiler, Strategies for complex injuries of the hand, Der Unfallchirurg, 2017, 120(3), 237-25110.1007/s00113-017-0327-0Search in Google Scholar PubMed

[49] G. Mattiassich, F. Rittenschober, L. Dorninger, J. Rois, R. Mittermayr, R. Ortmaier, et al., Long-term outcome following upper extremity replantation after major traumatic amputation, BMC Musculoskeletal Disorders, 2017, 18(1), 7710.1186/s12891-017-1442-3Search in Google Scholar PubMed PubMed Central

[50] S. Zuo, S. Wang, Current and emerging robotic assisted intervention for notes, Expert Review of Medical Devices, 2016, 13(12), 1095-110510.1080/17434440.2016.1254037Search in Google Scholar PubMed

[51] A. Gudeloglu, J. V. Brahmbhatt, S. J. Parekattil, Robotic-assisted microsurgery for an elective microsurgical practice, Seminars in Plastic Surgery, 2014, 28(1), 11-1910.1055/s-0034-1368162Search in Google Scholar PubMed PubMed Central

[52] G. R. Sutherland, S. Lama, L. S. Gan, S. Wolfsberger, K. Zereinia, Merging machines with microsurgery: Clinical experience with neuroarm, Journal of Neurosurgery, 2013, 118(3), 521-52910.3171/2012.11.JNS12877Search in Google Scholar PubMed

[53] W. Hunter, T. Doukoglou, S. R. Lafontaine, P. G. Charette, L. A. Jones, M. A. Sagar, et al., A teleoperated microsurgical robot and associated virtual environment for eye surgery, Presence, 1993, 2(4), 265-28010.1162/pres.1993.2.4.265Search in Google Scholar

[54] A. Üneri, M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, I. Iordachita, New steady-hand eye robot with micro-force sensing for vitreoretinal surgery, In: 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, Sept 2010, 814-81910.1109/BIOROB.2010.5625991Search in Google Scholar PubMed PubMed Central

[55] Patent number wo 2016030767 a1, Surgical system for microsurgical techniques, https://patents.google.com/patent/WO2016030767A1/pt-PTSearch in Google Scholar

[56] Patent number wo 2017064305 a1, Method of manufacturing a medical tool, https://encrypted.google.com/patents/WO2017064305A1/noSearch in Google Scholar

[57] H. Ueda, R. Suzuki, A. Nakazawa, Y. Kurose, M. M. Marinho, N. Shono, et al., Toward autonomous collision avoidance for robotic neurosurgery in deep and narrowspaces in the brain, In: 3rd CIRP Conference on BioManufacturing, Procedia CIRP, 2017, 65, 110-11410.1016/j.procir.2017.04.027Search in Google Scholar

[58] M. E. Allaix, A. Arezzo, S. Arolfo, M. Caldart, F. Rebecchi, M. Morino, Transanal endoscopic microsurgery for rectal neoplasms. How I do it, Journal of Gastrointestinal Surgery, 2013, 17(3), 586-59210.1007/s11605-012-2060-xSearch in Google Scholar PubMed

[59] J. M. Ramirez, V. Aguilella, J. A. Gracia, J. Ortego, P. Escudero, J. Valencia, et al., Local full-thickness excision as first line treatment for sessile rectal adenomas: long-term results, Annals of Surgery, 2009, 249(2), 225-22810.1097/SLA.0b013e318190496fSearch in Google Scholar PubMed

[60] G. Tamburrini, E. Datteri. Ethical reflections on health care robotics, In: R. Capurro, M. Nagenborg (Eds.), Ethics and Robotics, IOS Press, 2009, 35-48Search in Google Scholar

[61] A. Nordmann., If and then: A critique of speculative nanoethics, NanoEthics, 2007, 1(1), 31-4610.1007/s11569-007-0007-6Search in Google Scholar

[62] N. Sharkey, Staying in the loop: human supervisory control of weapons, In: N. Bhuta, S. Beck, R. Geiß, H.-Y. Liu, C. Kreß (Eds.), Autonomous Weapons Systems: Law, Ethics, Policy, Cambridge University Press, 2016, 23-3810.1017/CBO9781316597873.002Search in Google Scholar

[63] G. Tamburrini, On banning autonomous weapons systems: from deontological to wide consequentialist reasons, In: N. Bhuta, S. Beck, R. Geiß, H.-Y. Liu, C. Kreß (Eds.), Autonomous Weapons Systems: Law, Ethics, Policy, Cambridge University Press, 2016, 122-14210.1017/CBO9781316597873.006Search in Google Scholar

[64] D. Amoroso, G. Tamburrini, The ethical and legal case against autonomy in weapons systems, Global Jurist, 2017, 1810.1515/gj-2017-0012Search in Google Scholar

[65] Ethics and autonomous weapon systems: An ethical basis for human control? International Committee of the Red Cross (ICRC), April 2018Search in Google Scholar

[66] S. Krishnan, A. Garg, R. Liaw, I. Miller, F. T. Pokorny, K. Goldberg, HIRL: Hierarchical in-verse reinforcement learning for long-horizon tasks with delayed rewards, arXiv preprint, arXiv:1604.06508, 2016Search in Google Scholar

[67] A. Mavroforou, E. Michalodimitrakis, C. Hatzitheofilou, A. Giannoukas, Legal and ethical issues in robotic surgery, International Angiology, 2010, 29(1), 75-79.Search in Google Scholar

Received: 2018-04-27
Accepted: 2018-10-12
Published Online: 2019-01-01

© 2019 Fanny Ficuciello, et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/pjbr-2019-0002/html
Scroll to top button