Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 7, 2017

β-Zeolite modified by ethylenediamine for sorption of Th(IV)

  • Liu Peng , Wu Hanyu , Yuan Ni , Yin Zhuoxin , Pan Duoqiang EMAIL logo and Wu Wangsuo EMAIL logo
From the journal Radiochimica Acta

Abstract

β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5–4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini–Radushkevich (D–R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

Award Identifier / Grant number: 21327801

Award Identifier / Grant number: 41573128

Award Identifier / Grant number: 21601179

Funding statement: Supported by the National Natural Science Foundation of China (21327801, 41573128, 21601179) and Fundamental Research Funds for the Central University (lzujbky-2015-70).

Acknowledgments

Supported by the National Natural Science Foundation of China (21327801, 41573128, 21601179) and Fundamental Research Funds for the Central University (lzujbky-2015-70).

References

1. Xu, D., Chen, C., Tan, X., Hu, J., Wang, X.: Sorption of Th(IV) on Na-rectorite: effect of HA, ionic strength, foreign ions and temperature. Appl. Geochem. 22, 12 (2007).10.1016/j.apgeochem.2007.08.003Search in Google Scholar

2. Zhao, D. L., Feng, S. J., Chen, C. L., Chen, S. H., Xu, D., Wang, X. K.: Adsorption of thorium(IV) on MX-80 bentonite: Effect of pH, ionic strength and temperature. Appl. Clay Sci. 41, 1 (2008).10.1016/j.clay.2007.09.012Search in Google Scholar

3. Rojo, I., Seco, F., Rovira, M., Giménez, J., Cervantes, G., Martí, V., Pablo, J. D.: Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J. Nucl. Mater. 385, 2 (2009).10.1016/j.jnucmat.2008.12.014Search in Google Scholar

4. Chen, C., Wang, X.: Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl. Radiat. Isot. 65, 2 (2007).10.1016/j.apradiso.2006.07.003Search in Google Scholar

5. Xia, Q. H., Shen, S. C., Song, J., Kawi, S., Hidajat, K.: Structure, morphology, and catalytic activity of β zeolite synthesized in a fluoride medium for asymmetric hydrogenation. J. Catal. 219, 1 (2003).10.1016/S0021-9517(03)00154-4Search in Google Scholar

6. Higgins, J. B., Lapierre, R. B., Schlenker, J. L., Rohrman, A. C., Wood, J. D., Kerr, G. T., Rohrbaugh, W. J.: The framework topology of zeolite beta. Zeolites 8, 6 (1988).10.1016/S0144-2449(88)80219-7Search in Google Scholar

7. Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D., Anousis, I.: Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ. 173, 1 (1995).10.1016/0048-9697(95)04748-4Search in Google Scholar

8. Salinas-Pedroza, M., Olguín, M.: Thorium removal from aqueous solutions of Mexican erionite and X zeolite. J. Radioanal. Nucl. Chem. 260, 1 (2004).10.1023/B:JRNC.0000027069.51452.41Search in Google Scholar

9. Fujii, M., Imaoka, A., Yoshimura, C., Waite, T. D.: Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH. Environ. Sci. Tech. 48, 8 (2014).10.1021/es405496bSearch in Google Scholar PubMed

10. Vidali, R., Remoundaki, E., Tsezos, M.: An experimental and modelling study of Cu2+ binding on humic acids at various solution conditions. Application of the NICA-Donnan model. Water, Air, Soil Poll. 218, 1 (2011).10.1007/s11270-010-0662-zSearch in Google Scholar

11. Liu, A., Gonzalez, R. D.: Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid. Langmuir. 16, 8 (2000).10.1021/la990607xSearch in Google Scholar

12. Yang, K., Miao, G., Wu, W., Lin, D., Pan, B., Wu, F., Xing, B.: Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere. 138, 2015 (2015).10.1016/j.chemosphere.2015.07.061Search in Google Scholar

13. Esfahani, S. M. B., Faghihian, H.: Modification of synthesized β-zeolite by ethylenediamine and monoethanolamine for adsorption of Pb2+. J. Water Process Eng. 3, 62 (2014).10.1016/j.jwpe.2014.05.007Search in Google Scholar

14. Chatti, R., Bansiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K.: Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Micropor. Mesopor. Mater. 121, 1 (2009).10.1016/j.micromeso.2009.01.007Search in Google Scholar

15. Faghihian, H., Pourbasirat, N.: Adsorption of phenol by N-cetylpridinium-modified beta zeolite. Int. J. Environ. Prot. 2, 4 (2012).Search in Google Scholar

16. Ho, Y. S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 5 (1999).10.1016/S0032-9592(98)00112-5Search in Google Scholar

17. Wang, Z., Wu, Z., Tan, T.: Sorption equilibrium, mechanism and thermodynamics studies of 1, 3-propanediol on beta zeolite from an aqueous solution. Biores. Tech. 145, 37 (2013).10.1016/j.biortech.2013.02.064Search in Google Scholar

18. Yang, S., Li, J., Shao, D., Hu, J., Wang, X.: Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 1 (2009).10.1016/j.jhazmat.2008.11.003Search in Google Scholar

19. Ho, Y. S., McKay, G.: The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 3 (2000).10.1016/S0043-1354(99)00232-8Search in Google Scholar

20. Bartell, F., Thomas, T. L., Fu, Y.: Thermodynamics of adsorption from solutions IV. Temperature dependence of adsorption. J. Phys. Chem. 55, 9 (1951).10.1021/j150492a005Search in Google Scholar

21. Ping, L., Zhuoxin, Y., Jianfeng, L., Qiang, J., Yaofang, D., Qiaohui, F., Wangsuo, W.: The immobilization of U(VI) on iron oxyhydroxides under various physicochemical conditions. Environ. Sci. 16, 10 (2014).10.1039/C4EM00301BSearch in Google Scholar PubMed

22. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 9 (1918).10.1021/ja02242a004Search in Google Scholar

23. Freundlich, H.: Over the adsorption in solution. J. Phys. Chem. 57, 385 (1906).Search in Google Scholar

24. Dubinin, M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 2 (1960).10.1021/cr60204a006Search in Google Scholar

25. Mahmoodi, N. M., Hayati, B., Arami, M., Lan, C.: Adsorption of textile dyes on pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination 268, 1 (2011).10.1016/j.desal.2010.10.007Search in Google Scholar

26. Liu, P., Qi, W., Du, Y. F., Li, Z., Wang, J., Bi, J. J., Wu, W. S.: Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci. China Chem. 57, 11 (2014).10.1007/s11426-014-5204-xSearch in Google Scholar

27. Tan, X., Wang, X., Fang, M., Chen, C.: Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Coll. Sur. A. 296, 1 (2007).10.1016/j.colsurfa.2006.09.032Search in Google Scholar

28. Lin, S. H., Wang, C. S.: Treatment of high-strength phenolic wastewater by a new two-step method. J. Hazard. Mater. 90, 2 (2002).10.1016/S0304-3894(01)00351-XSearch in Google Scholar

29. Lei, C., Xuan, G.: Thermodynamic study of Th(IV) sorption on attapulgite. Appl. Radiat. Isot. 67, 1 (2009).10.1016/j.apradiso.2008.05.014Search in Google Scholar PubMed

30. Xiaoli, T., Qiaohui, F., Xiangke, W., Bernd, G.: Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ. Sci. Tech. 43, 9 (2009).Search in Google Scholar

31. Joanna, M. C., Iwona, I. S., Jose, C. J., Radomski, M. W.: Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem. Res. Toxicol. 25, 10 (2012).Search in Google Scholar

32. Chisholm-Brause, C. J., Berg, J. M., Matzner, R. A., Morris, D. E.: Uranium(VI) sorption complexes on montmorillonite as a function of solution chemistry. J. Colloid Interf. Sci. 233, 1 (2001).10.1006/jcis.2000.7227Search in Google Scholar PubMed

33. Wu, H., Li, P., Pan, D., Yin, Z., Fan, Q., Wu, W.: Interactions between silicon oxide nanoparticles (SONPs) and U(VI) contaminations: effects of pH, temperature and natural organic matters. PLoS One 11, 3 (2016).10.1371/journal.pone.0149632Search in Google Scholar PubMed PubMed Central

Received: 2016-7-9
Accepted: 2016-11-9
Published Online: 2017-1-7
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2016-2661/html
Scroll to top button