Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 26, 2013

Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy

  • A. A. Danilov EMAIL logo , D. V. Nikolaev , S. G. Rudnev , V. Yu. Salamatova and Yu. V. Vassilevski

Abstract

A technology for high-resolution efficient numerical modelling of bioimpedance measurements is considered that includes 3D image segmentation, adaptive unstructured tetrahedral mesh generation, finite-element discretization, and analysis of simulation data. The first-order convergence of the proposed numerical methods on a series of unmatched meshes and roughly second-order convergence on a series of nested meshes are shown. The current, potential, and sensitivity field distributions are computed for conventional schemes of bioimpedance measurements using segmented geometrical torso model of the Visible Human Project (VHP) man. Use of the adaptive tetrahedral meshes reduces significantly the number of mesh elements and, hence, the associated computational cost compared to rectangular meshes while keeping the model accuracy.

Published Online: 2013-02-26
Published in Print: 2012-10

© 2013 by Walter de Gruyter GmbH & Co.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2012-0024/html
Scroll to top button