Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 9, 2017

Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis

  • Mohamed Y. Abou-zeid EMAIL logo and Mona A. A. Mohamed

Abstract

This article is an analytic discussion for the motion of power-law nanofluid with heat transfer under the effect of viscous dissipation, radiation, and internal heat generation. The governing equations are discussed under the assumptions of long wavelength and low Reynolds number. The solutions for temperature and nanoparticle profiles are obtained by using homotopy perturbation method. Results for the behaviours of the axial velocity, temperature, and nanoparticles as well as the skin friction coefficient, reduced Nusselt number, and Sherwood number with other physical parameters are obtained graphically and analytically. It is found that as the power-law exponent increases, both the axial velocity and temperature increase, whereas nanoparticles decreases. These results may have applicable importance in the research discussions of nanofluid flow in channels with small diameters under the effect of different temperature distributions.

Nomenclature
a

Half width of the channel

b

The amplitude

c̅

The wave velocity

DB

Brownian diffusion coefficient

DT

Thermophoretic diffusion coefficient

Ec

Eckert number

f

The nanoparticle phenomena

f0

Nanoparticles at y=0

f1

Nanoparticles at y=h

g

The gravitational acceleration

kR

The mean absorption coefficient

k

Thermal conductivity

L

Dimensional slip parameter

n

The power-law exponent

Nb

Brownian motion parameter

Nt

The thermophoresis parameter

P

The fluid pressure

Pr

Prandtl number

q

The radiative heat flux

Q0

The volumetric rate of heat generation

R

Radiation parameter

Re

Reynolds number

sign

Signum function

Sc

Schmidt number

T

The fluid temperature

T0

Temperature at y=0

T1

Temperature at y=h

u

Axial velocity

v

Transverse velocity

x

Axial coordinate

y

Transverse coordinate

Greek symbols
α

Angle of inclination

β

Dimensionless slip parameter

σ*

Stefan Boltzmann constant

φ

The amplitude ratio

λ

The volumetric rate of heat generation

λ̅

The wavelength

μ

The dynamic viscosity of fluid

ρf

The density of the fluid

ρp

The density of the particle

(ρc)f

Heat capacity of the fluid

(ρc)p

Effective heat capacity of the nanoparticle material

θ

Angle between walls of channel

Sij

Stress tensor components in power-law model

References

[1] R. Ben Mansour, N. Galanis, and C. T. Nguyen, Appl. Therm. Eng. 27, 240 (2007).10.1016/j.applthermaleng.2006.04.011Search in Google Scholar

[2] X. Q. Wang and A. S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007).10.1016/j.ijthermalsci.2006.06.010Search in Google Scholar

[3] M. Goyal and R. Bhargava, Appl. Nanosci. 4, 761 (2014).10.1007/s13204-013-0254-5Search in Google Scholar

[4] T. Hayat, T. Muhammad, S. A. Shehzad, and A. Alsaedi, J. Mol. Liq. 221, 93 (2016).10.1016/j.molliq.2016.05.057Search in Google Scholar

[5] M. S. Kandelousi and R. Ellahi, Z. Naturforsch. A 70, 115 (2015).10.1515/zna-2014-0258Search in Google Scholar

[6] R. Ellahi, M. H. Tariq, M. Hassan, and K. Vafai, J. Mol. Liq. 229, 339 (2017).10.1016/j.molliq.2016.12.073Search in Google Scholar

[7] K. M. Shirvan, M. Mamourian, S. Mirzakhanlari, and R. Ellahi, Powder Technol. 313, 99 (2017).10.1016/j.powtec.2017.02.065Search in Google Scholar

[8] K. M. Shirvan, R. Ellahi, M. Mamourian, and M. Moghiman, Int. J. Heat Mass Transf. 106, 1110 (2017).10.1016/j.ijheatmasstransfer.2016.11.022Search in Google Scholar

[9] M. Sajid, I. Pop, and T. Hayat, Comput. Math. Appl. 59, 493 (2010).10.1016/j.camwa.2009.06.017Search in Google Scholar

[10] M. Sheikholeslami and S. A. Shehzad, Int. J. Heat Mass Transf. 106, 1261 (2017).10.1016/j.ijheatmasstransfer.2016.10.107Search in Google Scholar

[11] F. M. Abbasi, S. A. Shehzad, T. Hayat, and B. Ahmad, J. Magnet. Magnetic Mater. 404, 159 (2016).10.1016/j.jmmm.2015.11.090Search in Google Scholar

[12] S. A. Shehzad, F. M. Abbasi, T. Hayat, and F. Alsaadi, J. Mol. Liq. 209, 723 (2015).10.1016/j.molliq.2015.05.058Search in Google Scholar

[13] T. Hayat, Y. Humaira, and A. Alsaedi, J. Braz. Soc. Mech. Sci. Eng. 37, 463 (2015).10.1007/s40430-014-0177-4Search in Google Scholar

[14] K. Vafai A. A. Khan, S. Sajjad, and R. Ellahi, Z. Naturforsch. A 70, 281 (2015).10.1515/zna-2014-0330Search in Google Scholar

[15] S. Noreen, S. Nadeem, L. Changhoon, H. K. Zafar, and U. H. Rizwan, Results Phys. 3, 161 (2013).10.1016/j.rinp.2013.08.005Search in Google Scholar

[16] M. Y. Abou-zeid, Thermal Sci. DOI 10. 2298/TSCI150215079A.10.2298/TSCI150215079ASearch in Google Scholar

[17] M. Y. Abou-zeid, Results Phys. 6, 481 (2016).10.1016/j.rinp.2016.08.006Search in Google Scholar

[18] S. Nadeem, R. U. Haq, and Z. H. Khan, Appl. Nanosci. 4, 625 (2014).10.1007/s13204-013-0235-8Search in Google Scholar

[19] M. M. Bhattia, A. Zeeshanb, and R. Ellahi, Microvasc. Res. 110, 32 (2017).10.1016/j.mvr.2016.11.007Search in Google Scholar PubMed

[20] T. Hayata, R. Sajjad, T. Muhammad, A. Alsaedi, and R. Ellahi, Results Phys. 7, 535 (2017).10.1016/j.rinp.2016.12.039Search in Google Scholar

[21] Y. Wang, T. Hayat, and M. A. Siddiqui, Math. Method. Appl. Sci. 28, 329 (2005).10.1002/mma.571Search in Google Scholar

[22] K. Vajravelu, K. V. Prasad, P. S. Datti, and B. T. Raju, Ain Shams Eng. J. 5, 157 (2014).10.1016/j.asej.2013.07.009Search in Google Scholar

[23] T. Hayat, E. Momoniat, and F. M. Mahomed, Probl. Eng. 2006, Article ID 84276 (2006).10.1155/MPE/2006/84276Search in Google Scholar

[24] J. C. Misra and S. K. Pandey, Int. J. Eng. Sci. 39, 387 (2001).10.1016/S0020-7225(00)00038-0Search in Google Scholar

[25] M. K. Chaube, D. Tripathi, O. Anwar, S. Sharma, and V. S. Pandey, Appl. Bionics Biomech. 2015, Article ID 152802 (2015).10.1155/2015/152802Search in Google Scholar PubMed PubMed Central

[26] W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, McGraw-Hill, New York 1998.Search in Google Scholar

[27] J. H. He, Chaos Soliton. Fract. 26, 695 (2005).10.1016/j.chaos.2005.03.006Search in Google Scholar

[28] B. Gebhart, Similarity Solutions for Laminar External Boundary Region Flows, Natural Convection, Fundamentals and Applications, Hemisphere Publishing Corporation, Washington 1985.Search in Google Scholar

[29] A. Pantokratoras, Appl. Math. Model. 29, 553 (2005).10.1016/j.apm.2004.10.007Search in Google Scholar

[30] S. E. Charmand and G. S. Kurland, Blood Flow and Microcirculation, John Wiley & Sons, New York, NY, USA 1974.Search in Google Scholar

Received: 2017-5-6
Accepted: 2017-8-13
Published Online: 2017-9-9
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2017-0154/html
Scroll to top button