Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 8, 2019

Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method

  • Havva Elif Lapa , Ali Kökce EMAIL logo , Ahmet Faruk Özdemir and Şemsettin Altındal

Abstract

The 50 nm thickness Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC semiconductor as interlayer by electro-spinning method and so Au/Zn-doped PVA/n-4H-SiC metal-polymer-semiconductor (MPS) structure were fabricated. The real and imaginary parts of the complex dielectric constant (ε′, ε′′), loss-tangent (tan δ), the real and imaginary parts of the complex electric modulus (M′, M′′) and ac electrical conductivity (σac) behavior of this structure were examined using impedance spectroscopy method in a wide range of frequency (1 kHz–400 kHz) and voltage (−1 V)–(+6 V) at room temperature. The values of ε′, ε′′, tan δ, M′, M′′ and σac are determined sensitive to the frequency and voltage in depletion and accumulation regions. The values of ε′ and ε′′ decrease with increasing frequency while the values of M′ and σac increase. The peak behavior in the tan δ and M′′ vs. frequency curves was attributed to the dielectric relaxation processes and surface states (Nss). The plots of ln (σac) vs. ln (f) at enough high forward bias voltage (+6 V) have three linear regions with different slopes which correspond to low, intermediate and high frequencies, respectively. The dc conductivity is effective at low frequencies whereas the ac conductivity effective at high frequencies. According to experimental results, the surface/dipole polarizations can occur more easily occur at low frequencies and the majority of Nss between Zn-doped PVA and n-4H-SiC contributes to the deviation of dielectric behavior of this structure.

Acknowledgement

The authors wish to thank The Management Unit of Scientific Research Projects of Süleyman Demirel University (SDUBAP) for contributions. This study was supported by SDUBAP under 4611-D2-16.

References

1. V. Rajagopal Reddy, A. Umapathi, L. Dasaradha Rao, Curr. Appl. Phys. 13 (2013) 1604.10.1016/j.cap.2013.06.001Search in Google Scholar

2. A. A. Hendi, R. H. Al Orainy, Synth. Met. 193 (2014) 31.10.1016/j.synthmet.2014.03.007Search in Google Scholar

3. H. Tecimer, H. Uslu, Z. A. Alahmed, F. Yakuphanoğlu, Ş. Altındal, Compos. Part B Eng. 57 (2014) 25.10.1016/j.compositesb.2013.09.040Search in Google Scholar

4. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. 133 (2016) 33.10.1002/app.43827Search in Google Scholar

5. I. M. Afandiyeva, M. M. Bülbül, Ş. Altındal, S. Bengi, Microelectron. Eng. 93 (2012) 50.10.1016/j.mee.2011.05.041Search in Google Scholar

6. B.-G. Kim, S. M. Cho, T.-Y. Kim, H. M. Jang, Phys. Rev. Lett. 86 (2001) 3404.10.1103/PhysRevLett.86.3404Search in Google Scholar

7. E. E. Tanrıkulu, D. E. Yıldız, A. Günen, Ş. Altındal, Phys. Scr. 90 (2015) 95801.10.1088/0031-8949/90/9/095801Search in Google Scholar

8. H. G. Çetinkaya, D. E. Yıldız, Ş. Altındal, Int. J. Mod. Phys. B 29 (2015) 1450237.10.1142/S0217979214502373Search in Google Scholar

9. V. Rajagopal Reddy, Indian J. Phys. 89 (2015) 463.10.1007/s12648-014-0602-7Search in Google Scholar

10. C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Search in Google Scholar

11. İ. Taşçıoğlu, Ö. Tüzün Özmen, H. M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46 (2017) 2379.10.1007/s11664-017-5294-2Search in Google Scholar

12. M. İlhan, J. Mater. Electron. Device 1 (2017) 15.Search in Google Scholar

13. S. Altındal, J. Mater. Electron. Device 1 (2017) 42.Search in Google Scholar

14. H. Özerli, İ. Karteri, A. Bekereci, Ş. Karataş, J. Mater. Electron. Device 1 (2017) 83.Search in Google Scholar

15. G. V. Kumar, R. Chandramani, Acta Phys. Pol. A 117 (2010) 917.10.12693/APhysPolA.117.917Search in Google Scholar

16. U. Aydemir, I. Taşçıoğlulu, Ş. Altindal, İ. Uslu, Mater. Sci. Semicond. Process. 16 (2013) 1865.10.1016/j.mssp.2013.07.013Search in Google Scholar

17. Y. Azizian-Kalandaragh, U. Aydemir, Ş. Altindal, J. Electron. Mater. 43 (2014) 1226.10.1007/s11664-014-2998-4Search in Google Scholar

18. D. E. Yıldız, D. H. Apaydın, L. Toppare, A. Cirpan, J. Appl. Polym. Sci. 134 (2017) 1.10.1002/app.44817Search in Google Scholar

19. S. Demirezen, Appl. Phys. A 112 (2013) 827.10.1007/s00339-013-7605-7Search in Google Scholar

20. A. F. Özdemir, Z. Kotan, D. A. Aldemir, S. Altındal, Eur. Phys. J. Appl. Phys. 46 (2009) 20402.10.1051/epjap/2009035Search in Google Scholar

21. V. R. Reddy, Thin Solid Films 556 (2014) 300.10.1016/j.tsf.2014.01.036Search in Google Scholar

22. Ç. Bilkan, S. Zeyrek, S. E. San, Ş. Altindal, Mater. Sci. Semicond. Process. 32 (2015) 137.10.1016/j.mssp.2014.12.071Search in Google Scholar

23. T. Tunç, İ. Dökme, Ş. Altındal, İ. Uslu, J. Appl. Polym. Sci. 122 (2011) 265.10.1002/app.34029Search in Google Scholar

24. R. K. Gupta, K. Ghosh, P. K. Kahol, Curr. Appl. Phys. 9 (2009) 933.10.1016/j.cap.2008.09.007Search in Google Scholar

25. H. E. Lapa, A. Kökce, M. Al-Dharob, İ. Orak, A. F. Özdemir, Ş. Altındal, Eur. Phys. J. Appl. Phys. 80 (2017) 10101.10.1051/epjap/2017170147Search in Google Scholar

26. H. E. Lapa, A. Kökce, A. F. Özdemir, İ. Uslu, Ş. Altındal, Bull. Mater. Sci. 41 (2018) 82.10.1007/s12034-018-1602-6Search in Google Scholar

27. B. C. Sutar, R. N. P. Choudhary, P. R. Das, Ceram. Int. 40 (2014) 7791.10.1016/j.ceramint.2013.12.122Search in Google Scholar

28. A. Chelkowski, Dielectrics Physics, PWN/Elsevier, Amsterdam (1980).Search in Google Scholar

29. A. A. Sattar, S. A. Rahman, Phys. Status Solidi Appl. Res. 200 (2003) 415.10.1002/pssa.200306663Search in Google Scholar

30. P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glas. 13 (1972) 171.Search in Google Scholar

31. P. Dutta, S. Biswas, S. De Kumar, Mater. Res. Bull. 37 (2002) 193.10.1016/S0025-5408(01)00813-3Search in Google Scholar

32. Y. Şafak-Asar, T. Asar, Ş. Altındal, S. Özçelik, J. Alloys Compd. 628 (2015) 442.10.1016/j.jallcom.2014.12.170Search in Google Scholar

33. P. Chattopadhyay, B. RayChaudhuri, Solid. State. Electron. 36 (1993) 605.10.1016/0038-1101(93)90272-RSearch in Google Scholar

34. N. A. Khan, M. Mumtaz, A. A. Khurram, J. Appl. Phys. 104 (2008) 33916.10.1063/1.2967823Search in Google Scholar

35. J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, London (1873).Search in Google Scholar

36. K. W. Wagner, Ann. Der Phys. 40 (1913) 817.10.1002/andp.19133450502Search in Google Scholar

37. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49 (1994) 7868.10.1103/PhysRevB.49.7868Search in Google Scholar

38. V. V Daniel, Dielectric Relaxation, Academic, London (1967).Search in Google Scholar

39. G. Yellaiah, T. Shekharam, K. Hadasa, M. Nagabhushanam, J. Alloys Compd. 609 (2014) 192.10.1016/j.jallcom.2014.04.124Search in Google Scholar

40. I. Chaabane, F. Hlel, K. Guidara, J. Alloys Compd. 461 (2008) 495.10.1016/j.jallcom.2007.07.031Search in Google Scholar

Received: 2017-12-04
Accepted: 2019-06-18
Published Online: 2019-11-08
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2017-1091/html
Scroll to top button