Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 20, 2021

Jellyfish-like few-layer graphene nanoflakes: high paramagnetic response alongside increased interlayer interaction

  • Alexander Ulyanov EMAIL logo , Dmitrii Stolbov and Serguei Savilov

Abstract

Jellyfish-like graphene nanoflakes (GNF), prepared by hydrocarbon pyrolysis, are studied with electron paramagnetic resonance (EPR) method. The results are supported by X-ray photoelectron spectroscopy (XPS) data. Oxidized (GNFox) and N-doped oxidized (N-GNFox) flakes exhibit an extremely high EPR response associated with a large interlayer interaction which is caused by the structure of nanoflakes and layer edges reached by oxygen. The GNFox and N-GNFox provide the localized and mobile paramagnetic centers which are silent in the pristine (GNF p ) and N-doped (N-GNF) samples. The change in the relative intensity of the line corresponding to delocalized electrons is parallel with the number of radicals in the quaternary N-group. The environment of localized and mobile electrons is different. The results can be important in GNF synthesis and for explanation of their features in applications, especially, in devices with high sensitivity to weak electromagnetic field.


Corresponding author: Alexander Ulyanov, Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gori, 1, Moscow 119991, Russia, E-mail:

Funding source: Russian Foundation for Basic Research

Award Identifier / Grant number: 19-03-00713 A

Acknowledgements

Authors thank Prof. V.V. Lunin who initiated the presented work. The authors acknowledge the support from “Nanochemistry and Nanomaterials” MSU Equipment Center acting under Lomonosov Moscow State University Program of Development.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was funded by Russian Foundation for Basic Research according to the project No. 19-03-00713 A.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chernyak, S. A., Stolbov, D. N., Ivanov, A. S., Klokov, S. V., Egorova, T. B., Maslakov, K. I., Eliseev, O. L., Maximov, V. V., Savilov, S. V., Lunin, V. V. Catal. Today 2019, 357, 193–202; https://doi.org/10.1016/j.cattod.2019.02.044.Search in Google Scholar

2. Arkhipova, E. A., Ivanov, A. S., Maslakov, K. I., Savilov, S. V. Electrochim. Acta 2020, 353, 136463; https://doi.org/10.1016/j.electacta.2020.136463.Search in Google Scholar

3. Wang, B., Likodimos, V., Fielding, A. J., Dryfe, R. A. W. Carbon 2020, 160, 236–246; https://doi.org/10.1016/j.carbon.2019.12.045.Search in Google Scholar

4. Kempiński, M. Mater. Lett. 2018, 230, 180–182.10.1016/j.matlet.2018.07.099Search in Google Scholar

5. Sun, Y., Wang, X., Tang, B., Ban, J., He, Y., Huang, W., Tao, C., Luo, H., Sun, J. Mater. Lett. 2017, 189, 54–57; https://doi.org/10.1016/j.matlet.2016.06.113.Search in Google Scholar

6. Chen, X., Wang, L., Li, W., Wang, Y., Wu, Z., Zhang, M., Han, Y., He, Y., Wang, N. Nano Res. 2013, 6, 619–626; https://doi.org/10.1007/s12274-013-0338-2.Search in Google Scholar

7. Lebepe, T. C., Parani, S., Vuyelwa, N., Kodama, T., Oluwafemi, O. S. Mater. Lett. 2020, 279, 128470; https://doi.org/10.1016/j.matlet.2020.128470.Search in Google Scholar

8. Vidhya, M. S., Ravi, G., Yuvakkumar, R., Velauthapillai, D., Thambidurai, M., Dang, C., Saravanakumar, B., Syed, A., Dawoud, T. M. S. Mater. Lett. 2020, 276, 128193; https://doi.org/10.1016/j.matlet.2020.128193.Search in Google Scholar

9. Wang, C., Fu, Q., Wen, D. Z. Phys. Chem. 2018, 232, 1647–1674; https://doi.org/10.1515/zpch-2018-1170.Search in Google Scholar

10. Moreno-Castilla, C., Maldonado-Hódar, F. J. Carbon 2005, 43, 455–465; https://doi.org/10.1016/j.carbon.2004.10.022.Search in Google Scholar

11. Du, X., Tai, Y., Liu, H., Zhang, J., Su, M., Li, F., Wang, S. Z. Phys. Chem. 2020, 234, 1645–1659; https://doi.org/10.1515/zpch-2018-1317.Search in Google Scholar

12. Du, X., Duan, Y., Zhang, J., Mi, G. Z. Phys. Chem. 2018, 232, 431–443; https://doi.org/10.1515/zpch-2017-0993.Search in Google Scholar

13. Savilov, S., Suslova, E., Epishev, V., Tveritinova, E., Zhitnev, Y., Ulyanov, A., Maslakov, K., Isaikina, O. Nanomaterials 2021, 11, 352; https://doi.org/10.3390/nano11020352.Search in Google Scholar PubMed PubMed Central

14. Lee, K. S., Phiri, I., Park, C. W., Ko, J. M. Mater. Lett. 2020, 275, 128133; https://doi.org/10.1016/j.matlet.2020.128133.Search in Google Scholar

15. Kumar, M., Chauhan, H., Satpati, B., Deka, S. Z. Phys. Chem. 2019, 233, 85–104.Search in Google Scholar

16. Ershadi, M., Javanbakht, M., Mozaffari, S. A., Brandell, D., Lee, M. T., Zahiri, B. J. Alloys Compd. 2020, 818, 152912; https://doi.org/10.1016/j.jallcom.2019.152912.Search in Google Scholar

17. Ampadu, E. K., Kim, J., Oh, E., Lee, D. Y., Kim, K. S. Mater. Lett. 2020, 277, 128323; https://doi.org/10.1016/j.matlet.2020.128323.Search in Google Scholar

18. Khan, H. U., Jan, M. T., Iqbal, M., Shah, M., Ullah, I., Khan, J., Mahmood, K., Niaz, A., Tariq, M. Z. Phys. Chem. 2020, 234, 27–43; https://doi.org/10.1515/zpch-2018-1302.Search in Google Scholar

19. Singaraju, S. A., Marques, G. C., Gruber, P., Kruk, R., Hahn, H., Breitung, B., Aghassi-Hagmann, J. Phys. Status Solidi Rapid Res. Lett. 2020, 14, 2000252; https://doi.org/10.1002/pssr.202000252.Search in Google Scholar

20. Rehman, T. U., Shah, L. A. Z. Phys. Chem. 2019, 235, 329–343; https://doi.org/10.1515/zpch-2019-1416.Search in Google Scholar

21. Chilakapati, R. B., Hemanth Kumar, S., Satyanarayana, S. V., Behara, D. K. Z. Phys. Chem. 2021, 867; https://doi.org/10.1515/zpch-2020-1717.Search in Google Scholar

22. Bankole, O. M., Olaseni, S. E., Adeyemo, M. A., Ogunlaja, A. S. Z. Phys. Chem. 2020, 234, 1681–1708; https://doi.org/10.1515/zpch-2019-1524.Search in Google Scholar

23. Tadyszak, K., Chybczyńska, K., Ławniczak, P., Zalewska, A., Cieniek, B., Gonet, M., Murias, M. J. Magn. Magn. Mater. 2019, 492, 165656; https://doi.org/10.1016/j.jmmm.2019.165656.Search in Google Scholar

24. Chernyak, S. A., Ivanov, A. S., Stolbov, D. N., Egorova, T. B., Maslakov, K. I., Shen, Z., Lunin, V. V., Savilov, S. V. Appl. Surf. Sci. 2019, 488, 51–60; https://doi.org/10.1016/j.apsusc.2019.05.243.Search in Google Scholar

25. Lin, T. T., Lai, W. H., Lü, Q. F., Yu, Y. Electrochim. Acta 2015, 178, 517–524; https://doi.org/10.1016/j.electacta.2015.08.048.Search in Google Scholar

26. Diamantopoulou, Α., Glenis, S., Zolnierkiwicz, G., Guskos, N., Likodimos, V. J. Appl. Phys. 2017, 121, 043906; https://doi.org/10.1063/1.4974364.Search in Google Scholar

27. Kempiński, M., Los, S., Florczak, P., Kempiński, W. Appl. Phys. Lett. 2018, 113, 084102.Search in Google Scholar

28. Augustyniak-Jabłokow, M. A., Strzelczyk, R., Fedaruk, R. Carbon 2020, 168, 665–672.10.1016/j.carbon.2020.07.023Search in Google Scholar

29. Wang, B., Likodimos, V., Fielding, A. J., Dryfe, R. A. W. Carbon 2020, 160, 236–246; https://doi.org/10.1016/j.carbon.2019.12.045.Search in Google Scholar

30. Chernyak, S. A., Podgornova, A. M., Arkhipova, E. A., Novotortsev, R. O., Egorova, T. B., Ivanov, A. S., Maslakov, K. I., Savilov, S. V., Lunin, V. V. Appl. Surf. Sci. 2018, 439, 371–373; https://doi.org/10.1016/j.apsusc.2018.01.059.Search in Google Scholar

31. Ohta, T., Bostwick, A., Mcchesney, J. L., Seyller, T., Horn, K., Rotenberg, E. Phys. Rev. Lett. 2007, 98, 206802; https://doi.org/10.1103/physrevlett.98.206802.Search in Google Scholar PubMed

32. Yang, C., Liu, Z., Chen, C., Shi, K., Zhang, L., Ju, X. J., Wang, W., Xie, R., Chu, L. Y. ACS Appl. Mater. Interfaces 2017, 9, 15758–15767; https://doi.org/10.1021/acsami.7b01710.Search in Google Scholar PubMed

33. Cao, T., Zhao, F., Da, Z., Qiu, F., Yang, D., Guan, Y., Cao, G., Zhao, Z., Li, J., Guo, X. Z. Phys. Chem. 2017, 231, 1797–1814; https://doi.org/10.1515/zpch-2016-0801.Search in Google Scholar

34. Cirić, L., Sienkiewicz, A., Gaál, R., Jaćimović, J., Vĝju, C., Magrez, A., Forró, L. Phys. Rev. B Condens. Matter 2012, 86, 195138.10.1103/PhysRevB.86.195139Search in Google Scholar

35. Ulyanov, A. N., Quang, H. D., Pismenova, N. E., Yu, S. C., Levchenko, G. G. Solid State Commun. 2012, 152, 1556–1559; https://doi.org/10.1016/j.ssc.2012.05.024.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-1784).


Received: 2020-11-26
Accepted: 2021-05-06
Published Online: 2021-05-20
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-1784/html
Scroll to top button