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Abstract. Algorithmic thinking and problem solving strategies are essential principles of com-
puter science. Programming education should reflect this and emphasize different aspects of these 
principles rather than syntactical details of a concrete programming language. In this paper, we 
identify three major aspects of algorithmic thinking as objectives of our curricula: the notion of a 
formal language to express algorithms, abstraction and automation to transfer proven strategies to 
new instances, and the limits of practical computability.

The primary contribution of this paper are three examples that illustrate how general aspects 
of algorithmic thinking can be incorporated into programming classes. The examples are taken 
from our teaching materials for K-12 and university non-majors and have been extensively tested 
in the field.
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1. Introduction

Algorithmic thinking constitutes one of the core concepts of computer science. It has 
proven a versatile and indispensable tool for problem solving and found applications far 
beyond science. Hence, sustainable computer science education should be built upon 
algorithmic thinking as its primary objective, thus unfolding benefits for a broad and 
general education. However, how do we bring algorithmic thinking to computer science 
education? In this paper, we identify a number of principles that we want to deliver to 
students at different levels. As the main contribution, we describe concrete examples of 
how to teach these paradigms, which have been proven successful in the past.

Our work is part of ubiquitous efforts towards establishing sustainable computer science 
in K-12 education. Particularly noteworthy and inspiring are “CS unplugged” approaches 
as proposed by Bell et al. or Gallenbacher, which do completely away with computers 
and solely focus on the underlying algorithmic principles (Bell et al., 2012; Gallenbacher, 
2008). By incorporating such ideas into programming education, we effectively combine 
the strengths of the two approaches, resulting in a truly sustainable education.
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1.1. The Setting

The examples presented in this paper stem from teaching materials we have developed 
for primary school, high school, and university, respectively (Gebauer et  al., 2016; 
Böckenhauer et al., 2015a; Böckenhauer et al., 2015b; Kohn, 2016). The goal of our 
endeavours is to create a spiral curriculum that starts as early as fifth grade in primary 
school with iterations throughout mandatory school, and including computer science 
classes for non-majors at university level.

We use both Logo and Python in our classes and found that the simplicity of Logo 
is especially well-suited for primary school and complete beginners. At high school 
and university level, Python then allows us to discuss topics in more depth and to better 
link our programming classes to mathematics and the sciences. We have also extended 
our Python interpreter and included Logo’s repeat-loop into Python. This allows us 
to introduce iteration at an early stage without the need for variables, getting the best 
of both worlds.

Our curricula and examples make heavy use of turtle graphics, both in Logo as well 
as in Python. Apart from the obvious benefits of direct visualization, the turtle is also a 
source of powerful didactical metaphors. In particular, the examples as presented in this 
paper all rely on turtle graphics to convey or visualize an algorithmic principle.

1.2. Objectives

Computer science is a vast field with algorithmic thinking at its core. Our curricula 
hence focus on the study of algorithms and its various aspects. Our approach comprises 
three major aspects of algorithmic thinking, as described in the following paragraphs: 
the notion of the programming language as a formal language to express algorithms, abs-
traction and automation as central problem solving strategies, and the limits of practical 
computability as a motivation for improving existing algorithms. More on the authors’ 
goals, motivation, and approaches can be found in a complementing paper (Hromkovič 
et al., 2016).

Concept of a Formal Language. Students are introduced to programming as a means to 
convey instructions to a machine – in our case the turtle. The initial set of instructions is 
strongly limited and restricted to basic movements such as moving forward and turning. 
Each instruction has a clearly defined syntax and semantics, avoiding any ambiguity. 
At first, then, programming is the activity of writing sequences of such instructions, en-
coding graphical shapes. From our perspective, this is to say that students use a formal 
language to combine words to sentences. Even though each valid sentence conveys the 
information of a graphical shape, not every sentence makes sense in the context of the 
interpretation of the resulting shape.

The initial vocabulary given to the students is not adequate to encode more complex 
shapes in a human-accessible form. Students are early required to extend the vocabulary 
by defining new words, i. e., by defining subroutines. In the context of the turtle, this can 
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be beautifully explained as “teaching the turtle new words” (Papert, 1993). The seman-
tics of the new words is expressed algorithmically as a sentence over an already existing 
vocabulary. Think, for instance, of a house consisting of a triangle and a square. Both 
the triangle and the square themselves might be expressed as sequences of forward- and 
turning-instructions.

Hence, our objective is to provide students with a simple yet expandable base of 
instructions, the means to combine these instructions to sentences, and to define new 
words with associated unambiguous semantics. This way, the students are exposed to 
the concepts of modularization, formal languages, and expressing semantics in algo-
rithmic form.

Abstraction and Automation. Programming is, of course, much more than combining 
instructions to form programs. Some of the most essential key concepts are abstraction 
and automation. Modularization, for instance, only unfolds its full potential in combi-
nation with parameters. Having a dedicated instruction to draw a square, say, helps to 
clarify the intent of a program. Allowing that very same instruction to draw squares of 
various sizes makes it versatile and open to applications beyond its initial conception. 
Further abstraction could even introduce a second parameter to pertain to the number 
of vertices to draw, resulting in one instruction capable of drawing all regular polygons 
(see Fig. 1).

Abstraction itself also requires the concept of automation. Even drawing a regular 
polygon with a given number of vertices is a tedious task without the notion of a loop. 
For the step to an abstract instruction encompassing all polygons, the loop becomes a ne-
cessity. Once this level of automation is mastered, students are introduced to loops with 
variations, allowing for figures such as spirals where even the “parameter” automatically 
varies (see Fig. 1).

Automation and abstraction are not just core concepts of programming but of com-
puter science and algorithmic thinking in a much wider sense. Expressed in the context 
of problem solving, abstraction corresponds to the question “Can we adapt an already 
known or universally available strategy to solve the problem at hand?” Once we know 
how to solve a single instance, we then employ the concept of automation to apply our 
solution to a large set of instances.

Fig. 1. By parametrizing programs, we gradually gain more versatile algorithms and proce-
dures. Drawing a square of fixed size is the first step towards drawing arbitrary polygons of 
various sizes (above). Likewise, loops allow us to build ever more complex and larger prog-
rams out of simple and small parts (below).
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Limits of Practical Computability. Finding solutions automatically is not always 
feasible. Indeed, the insight that there are problems that cannot be solved algorithmi-
cally (i. e., undecidable problems), shown in 1936 by Turing in his seminal paper “On 
Computable Numbers, with an Application to the Entscheidungsproblem” (Turing, 
1936), is one of the deepest results of mathematics and laid the foundation for com-
puter science itself. However, even computable problems can often only be solved 
under certain restrictions, e. g., using an unacceptable amount of resources (time and 
space), or without full precision due to numeric errors. This gives rise to numerous 
interesting research questions and solutions, which can both be explained to non-
professionals.

For education, however, we need to make computability and its limitations visible 
and tangible. A prime example to serve this objective, as taken from turtle graphics, 
are circles. A computer cannot draw an exact circle, it must be drawn using an ap-
proximation such as a polygon (or Bézier curve). The cost of drawing an approximat-
ing polygon increases with the number of vertices, mainly due to the fact that the 
turtle needs time to turn at the vertices. Students therefore must find a compromise 
between more accurate representations and faster renderings, and eventually realize 
that the limitations of screen resolution quickly nullify additional precision beyond a 
certain point.

When seen in the light of modern applications, intractability is of particular impor-
tance to cryptography. In this regard, the inability to design efficient algorithms has 
far-reaching implications beyond computer science and its inclusion into the curriculum 
is well-warranted. At the same time, we found cryptography to be very motivating and 
well-suited as a subject of its own (Freiermuth et al., 2010).

2. Modular Development: Building a Town Step by Step

Our group is actively involved in introducing young students to programming as soon 
as at fifth grade. To this end, we developed teaching material, hold classes, and, most 
importantly, introduce teachers to our didactic approach as well as to fundamental 
concepts of computer science. These school projects are based on the German text-
book An introduction to programming in Logo (Hromkovič, 2014, German: Einfüh-
rung in die Programmierung mit Logo), and on a Logo booklet (Gebauer et al., 2016) 
covering the contents of its first seven chapters. The following example is taken from 
this booklet.

As already mentioned, one of the main objectives of our programming classes con-
sists in making the students confident with the modular development of programs and 
teaching them how to systematically apply this problem solving strategy to complex 
problems. To illustrate our approach and the achievements of the students, we present 
a sequence of learning activities from the third (out of seven) unit of the courses.

At this point, the students already know how to move the turtle forward and back-
ward on a straight line, how to rotate it as well as how to iterate over a sequence of 
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instructions for a predefined number of times. More precisely, the current vocabulary of 
the turtle comprises the following instructions as well as their abbreviations: forward 
(fd), back (bk), left (lt), right (rt), clearscreen (cs), penup (pu), pendown 
(pd), and repeat. Furthermore, the students are already used to giving their programs 
names and to reusing available programs as subprograms within main programs in an 
elementary way. In subsequent activities, they learn how to develop a table that consists 
of rows of identical squares in a proper modular way.

To reinforce the concept of modular development, the students are now challenged 
to write a program for drawing a small town, which consists of streets with identical 
houses. While the program for drawing a house is already available in the booklet, the 
students are expected to consequently apply the approach they intensively practiced. 
They are therefore expected to:

Identify the next shape or pattern they can systematically reuse.●●
Write a sequence of instructions for drawing it.●●
Give this subprogram a name.●●
Test and iteratively improve the code until the solution meets the assignment.●●

Afterwards, the students should reflect on how to adjust the position of the turtle in 
order to draw the pattern by simply reusing the program they developed above, to test 
and to iteratively improve their approach, and to finally integrate the two modules of 
their solution. In a following step, this new main program can be reused as a subprog-
ram in other main programs of increased complexity. More specifically, the students are 
given the program shown in Listing 1.1 accompanied by the following exercise, which 
asks them to study the effects of each command in detail.

Exercise. Where does the turtle start drawing the house? Think about the path the 
turtle follows when drawing the house using the program HOUSE. Where is the 
turtle located at the end of the execution? Draw the image and describe the effect 
of each command.

Next, they are told how to design a program HOUSEROW (Listing 1.2) that uses HOUSE 
as a subprogram. Here, the most difficult task is to position the turtle in such a way that, 
after each iteration, the new house is drawn at the correct coordinates.

Listing 1.1: Drawing a house using a simple repeat-loop.

to HOUSE
rt 90
repeat 4 [fd 50 rt 90]
lt 60 fd 50 rt 120 fd 50 lt 150

end

Listing 1.2: Drawing a row of houses.

to HOUSEROW
repeat 5 [HOUSE rt 90 pu fd 50 lt 90 pd]

end
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Finally, the students are asked to use the modular approach in order to draw the town 
that consists of multiple streets. This way, the students learn how to extend the language 
of the computer step by step with more complex programs. The crucial observation is 
that the overall complexity is hidden in the smaller subprograms.

Exercise. At this point, we would like to extend the complex of buildings by 
additional streets. Use the program HOUSEROW as a building block to draw the 
image shown in Fig. 2.
Hint: After the completion of a row, the turtle has to be moved to the correct posi-
tion to build the next street.

Modular development offers a didactically appealing platform for creative tasks. In 
the two following exercises, the students observe that even small changes such as adding 
a window, a door, or a chimney to their houses may have a considerable impact on the 
overall outcome of the streets and the town they are designing.

Exercise. We decide to order the roof for the houses from another vendor. That 
is, we get two types of building blocks: One called ROOF and another one called 
BASE. Write two programs to draw the two building blocks. Combine those pro-
grams to form a new program HOUSE1 that draws a house.

Exercise. The houses in Listing 1.1 are very simple. Try to be creative and come 
up with a new design for a house. Use your house to build an entire complex of 
buildings.

The students learn that modular development is a systematic and efficient problem 
solving strategy. Moreover, they experience that subsequent changes in a basic module 
of a properly developed complex program require no or very limited additional program-
ming effort.

Fig. 2: A small town that consists of 15 houses.

At this point, the students already know how to move the turtle forward and
backward on a straight line, how to rotate it as well as how to iterate over a
sequence of instructions for a predefined number of times. More precisely, the
current vocabulary of the turtle comprises the following instructions as well as
their abbreviation: forward (fd), back (bk), left (lt), right (rt), clearscreen
(cs), penup (pu), pendown (pd), and repeat. Furthermore, the students are
already used to giving their programs names and to reusing available programs
as subprograms within main programs in an elementary way. In subsequent
activities, they learn how to develop a table that consists of rows of identical
squares in a proper modular way.

To reinforce the concept of modular development, the students are now
challenged to write a program for drawing a small town, which consists of streets
with identical houses. While the program for drawing a house is already available
in the booklet, the students are expected to consequently apply the approach
they intensively practiced. They are therefore expected to:

– identify the next shape or pattern they can systematically reuse,
– write a sequence of instructions for drawing it,
– give this subprogram a name, and
– test and iteratively improve the code until the solution meets the assignment.

Afterwards, the students should reflect on how to adjust the position of the
turtle in order to draw the pattern by simply reusing the program they developed
above, to test and to iteratively improve their approach, and to finally integrate
the two modules of their solution. In a following step, this new main program
can be reused as a subprogram in other main programs of increased complexity.

More specifically, the students are given the program shown in Listing 1.1
accompanied by the following exercise, which asks them to study the effects of
each command in detail.

5

Fig. 2. A small town that consists of 15 houses.
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3. Making Approximation Errors Visible with the Pac-Man

The turtle draws a circle by approximation, actually drawing a polygon with, say, 36 ver-
tices (in practice, students often choose 360 vertices at first, building upon their knowl-
edge that 360○ stands for a complete circle). While the resulting figure is not discernible 
from a true circle on the screen, the approximation requires a couple of corrections when 
the circle is combined with other shapes. Most prominent is the question of finding the 
circle’s center and the correct value of the radius. Both are slightly, but discernibly, off 
compared to a true mathematical circle.

A particularly illuminating example is drawing a Pac-Man shape. Students are asked 
to write a Python program that draws a Pac-Man and typically end up with a solution as 
shown in Listing 1.3 (note that the repeat-loop shown here has been added to Python in 
order to support our curriculum. A further discussion can be found in the aforementioned 
complementing paper (Hromkovič et al., 2016)). However, their resulting pictures show 
that the shape is not closed as seen in Fig. 3: there is a small gap at the center of the 
shape. This discrepancy is subsequently discussed in a dedicated section and leads to a 
precise drawing of a pie chart.

Why does this gap in the center occur and how can we correct it? In a circle, any ra-
dius meets the circumference perpendicularly. This fact has been used twice in the prog-
ram (Listing 1.3). For the approximation with a polygon, this does not hold anymore: 
the angle between the radius leading to a vertex and the circumference requires a small 
correction φ (Fig. 4). The correction φ is exactly half of the turtle’s turning angle at each 
vertex. For our example with 36 vertices, this results in a 5○-correction (Listing 1.4). The 
correction of the angle can also be taken into the loop, resulting in a more symmetrical 
solution (Listing 1.5).

Listing 1.3: Drawing a Pac-Man.

from turtle import *
RADIUS = 100
right(45)
forward(RADIUS)
left(90)
repeat 27:

forward(RADIUS * 3.1416 * 2 / 36)
left(10)

left(90)
forward(RADIUS)

Listing 1.4: Correcting the angle (1).

left(90 + 5)
repeat 27:

forward(RADIUS * 3.1416 * 2 / 36)
left(10)

left(90 - 5)
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Finally, an alternative solution is to have the radius meet the circumference not at a 
vertex but at the center point of an edge. In this case, the radius does meet the circumfer-
ence perpendicularly. The resulting code, again, has a very symmetrical form (Listing 
1.6). Yet the ratio between radius and circumference now differs and requires to change 
the used approximation of the value of π.

4. Runtime Analysis Backed up by a Little Math

One of the authors is currently part of the team responsible at ETH Zurich for teaching 
computer science basics to non-computer science students (more specifically, students 
of biology, pharmacology, environmental sciences, health sciences and technology, ag-
riculture, geology, and nutritional sciences).

We have been introducing students to Logo using the previously mentioned booklet 
(Gebauer et al., 2016, see Section 2), whose main part is covered in roughly the first unit 

Listing 1.5: Correcting the angle (2).

repeat 27:
left(5)
forward(RADIUS * 3.1416 * 2 / 36)
left(5)

Listing 1.6: Starting the circumference not at a vertex but at the center of an edge instead.

repeat 27:
forward(RADIUS * 3.15 / 36)
left(10)
forward(RADIUS * 3.15 / 36)

Fig. 4. As circles are approximated by polygons the radius does not  
meet the circumference in a right angle but is off by an angle φ.

Fig. 3. An incomplete Pac-Man.
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of the lecture. After that, an advanced booklet is supplied that is specifically designed for 
this class (Böckenhauer et al., 2015a). As part of this booklet, more involved concepts 
such as variables, conditional execution, and while-loops are introduced. The students 
are then given three projects, which consolidate what they have learned so far by design-
ing small programs to solve specific tasks (Böckenhauer et al., 2015b). The lecture is 
accompanied by exercise classes in which the students are asked to present and explain 
their solutions to a tutor.

As a first step towards the mathematical analysis of algorithms, we give the students 
the following project. The examples are taken from the project booklet (Böckenhauer 
et al., 2015b) and the corresponding lecture notes. The goal is to show the students the 
idea of how to mathematically analyze how long a program will run depending on the 
input size. A typical example that does not need anything beyond high school mathema-
tics is to test whether a given number is prime. Logo is especially suited to visualize the 
distribution of (small) prime numbers without much overhead.

The first component is a program called QUAD (Listing 1.7) that draws a square, and 
which essentially consists of a simple loop, which the students already know from previ-
ous lessons. The size of the square is determined by the value of the parameter :WIDTH.

Next, we can write a program that tests whether a given input is a prime number. 
This is done in the most straightforward fashion, i. e., by testing whether there is smaller 
number (except 1) that divides it. Depending on the result, either a red or black square is 
drawn on the screen using the instruction setpencolor (setpc). Before that, the turtle 
is hidden with the instruction hideturtle (ht). The corresponding algorithm PRIME 
is shown in Listing 1.8.

The students can easily follow the steps and try out different inputs. As a next step, 
we ask them to carefully check corner cases, and give them the following exercise.

Listing 1.7: A simple square.

to QUAD :WIDTH
repeat 4 [fd :WIDTH rt 90]

end

Listing 1.8: Testing whether a given number is prime.

to PRIME :NUM
ht
make "IT 2
make "ISPRIME 1
while [:IT<:NUM] [

make "RES mod :NUM :IT
if :RES=0 [make "ISPRIME 0] []
make "IT :IT+1

]
if :ISPRIME=1 [setpc 1 QUAD 8] [setpc 0 QUAD 8]

end



J. Hromkovič et al.120

Exercise. PRIME does not yet work correctly on all inputs as the value of :IT is 
initially set to 2. However, we know that 1 is by definition not a prime number. 
Thus, PRIME 1 creates an incorrect output. Extend the program such that a black 
square is drawn when the input is 1. Moreover, an error message should be output 
if 0 or a negative number is given.

Once the students familiarized themselves with the algorithm, we discuss its running 
time. It is obvious that the time grows with larger inputs, and this seems to be unavoi-
dable on an intuitive level. Furthermore, it is easy to see that the running time directly 
depends on how often the body of the while-loop has been executed. We therefore agree 
on counting the number of these executions and neglect how many instructions are exe-
cuted with each iteration. The above trivial attempt needs roughly 2 iterations for inputs 
of length  (hence,  is the number of bits used to represent the input number). Now we 
show how to improve this running time using a little bit of math. The following exercise 
is well-suited to be presented to the students as part of the lecture.

Exercise. We can now make our algorithm PRIME “faster” (more efficient) by 
having it execute the while-loop less often. To this end, we make use of the 
following idea.
Suppose the input  is not a prime number. Then, by the definition of a prime 
number, there is a number , which is neither 1 nor , that divides  without 
remainder. But from this it also follows that there is a second number , which 
is also neither 1 nor , that also divides  without any remainder. An important 
point is that one of these two numbers is not larger than the square root   of . 
If, e. g.,  is larger than  , then  has to be smaller, since otherwise  ·  were 
larger than .
We want to use this observation to improve PRIME. Write an algorithm PRIME2 
which works exactly as PRIME, but in which the while-loop is modified such that 
the variable :IT does not take the values of all numbers smaller than :NUM, but 
only those that are smaller than or equal to :NUM .

The students are asked to verify the speedup by trying different inputs. Good can-
didate inputs to observe the increase in speed of course depend on the computer used. 
Moreover, the students can try to make a simple running time analysis of PRIME2 them-
selves, which leads to the result that the loop is now executed at most (roughly) 1.41 

times for inputs of length .
The above considerations give rise to another question, namely in which kind of ana-

lysis we are interested. To this end, the algorithm is modified such that the while-loop 
is left as soon as a divisor of the input is found. The resulting algorithm obviously still 
works correctly, but is it faster? Indeed, if the input is, say, an even number, the running 
time of the new algorithm is a lot better. However, if the input is prime, both algorithms 
take the same time. This is exactly the difference between a best case and a worst case 
analysis of the algorithm’s running time.

Now we can follow the modular building of algorithms (see Section 2) and use PRI-
ME2 as a building block to visualize the distribution of small prime numbers. More 
precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a subprogram to 
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visualize the appearances of prime numbers among the first :MAX natural numbers.
The result of executing PRIMES 26 is shown in Fig. 5. Next, we can improve the 

appearance by having the squares drawn in multiple rows (Listing 1.10). To this end, we 
write a new algorithm PRIMES2 with an additional parameter :ROW. The turtle moves to 
the next row whenever it drew a number of squares that is divisible by the value of :ROW. 
With PRIMES2 104 26 we obtain an output as shown in Fig. 6.

An advanced exercise then deals with prime powers. The students should solve this 
task at home, either alone or in small groups. The difficulty of this exercise is due to the 
usage of a return statement, which is implemented by the output instruction in Logo.

Fig. 2: The distribution of prime numbers between 1 and 26. Instead of red and
black squares, we use filled and unfilled ones.

Fig. 3: The distribution of prime numbers between 1 and 104.

However, if the input is prime, both algorithms take the same time. This is exactly
the difference between a best case and a worst case analysis of the algorithm’s
running time.

Now we can follow the modular building of algorithms (see Section 2) and use
PRIME2 as a building block to visualize the distribution of small prime numbers.
More precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a
subprogram to visualize the appearances of prime numbers among the first :MAX
natural numbers.

Listing 1.9: Visualizing primes.
to PRIMES :MAX

pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

The result of executing PRIMES 26 is shown in Figure 5. Next, we can improve
the appearance by having the squares drawn in multiple rows (Listing 1.10). To
this end, we write a new algorithm PRIMES2 with an additional parameter :ROW.
The turtle moves to the next row whenever it drew a number of squares that is
divisible by the value of :ROW. With PRIMES2 104 26 we obtain an output as
shown in Figure 6.

An advanced exercise then deals with prime powers. The students should
solve this task at home, either alone or in small groups. The difficulty of this
exercise is due to the usage of a return statement, which is implemented by the
output instruction in Logo.
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Fig. 6. The distribution of prime numbers between 1 and 104.

Listing 1.9: Visualizing primes.

to PRIMES :MAX
pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

Listing 1.10: Visualizing primes more nicely.

to PRIMES2 :MAX :ROW
pu lt 90 fd :ROW*10/2 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "REST mod :TEST :ROW
if :REST = 0 [

pu lt 90 fd :ROW*10 lt 90 fd 10 rt 180 pd
] [ ]
make "TEST :TEST+1

]
end
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Exercise. A prime power is a natural number that has exactly one prime factor. For 
instance, 27 is a prime power since it has the prime factorization

27 = 3 · 3 · 3 = 33.

Clearly, every prime number is thus also a prime power.
In this project, you design a program PRIMEPOW, which checks whether a given 
number is a prime power. To this end, do the following steps:

 Rewrite the program 1.	 PRIME to obtain a program PRIMEOUT that uses the com-
mand output instead of drawing squares. If the value of :NUM is prime, the 
value 1 should be returned, otherwise 0.
 2.	 PRIMEPOW has one parameter :TEST. We want to check whether the value as-
signed to :TEST is a prime power (possibly with the exponent being 1).
 First, the program checks using 3.	 PRIMEOUT whether :TEST is a prime num-
ber. If so, “Prime.” is printed on the screen and the execution is ended using 
stopall.

make "ISPRIME PRIMEOUT :TEST
if :ISPRIME=1 [pr [Prime.] stopall] []

 Otherwise, all numbers smaller than the value of 4.	 :TEST are iterated, and again 
using PRIMEOUT it is checked whether the current number is a prime. If so, it is 
checked whether it divides the value of :TEST without remainder.
 If such a prime number is found, 5.	 PRIMEPOW takes note of this by setting the 
value of a variable :FOUND to 1. :FOUND is initialized with 0. If a second such 
prime number is found, this will be noted since the value of :FOUND is already 
1. In this case, “More than one divisor.” is printed on the screen and the execu-
tion is again ended with stopall.
 Finally, if 6.	 :FOUND is still 1 after all numbers were tested, “Prime Power. Base: 
” and the prime number that divides the value of :TEST without remainder are 
printed on the screen.
 Check 7.	 PRIMEPOW using small input values.

This introduction using Logo proved to be very valuable for the students in the suc-
ceeding lessons, where we implement more complex projects using Python. More pre-
cisely, they were able to learn important paradigms without having to worry too much 
about syntactical details.

5. Conclusion

Programming education is a great opportunity to teach important core concepts of com-
puter science on various levels and to establish algorithmic thinking as part of a broad 
and general education. A necessary prerequisite is, of course, that we find ways to go 
beyond teaching the specifics of a programming language and rather put emphasis on 
those aspects of programming that lead to a deeper understanding of computer science.
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In this article, we have provided three examples of how programming education can 
incorporate more general principles of algorithmic thinking. All three examples have 
been taken from our well-tested teaching materials for primary school, high school, and 
university level, respectively. Further details about our curricula are given in the comple-
menting paper (Hromkovič et al., 2016).
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