Published

2021-01-01

Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters

Efectividad de recocido en PLA. Información sobre las propiedades mecánicas, termomecánicas y de cristalinidad

DOI:

https://doi.org/10.15446/mo.n62.89099

Keywords:

PLA, annealing, crystallinity, properties (en)
PLA, recocido, cristalinidad, propiedades (es)

Downloads

Authors

  • Carlos B. B. Luna Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba.
  • Danilo D. Siqueira Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba.
  • Edcleide M. Araújo Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba.
  • Renate M. R. Wellen Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba. Department of Materials Engineering, Federal University of Paraíba, Cidade Universitária, 58051-900, Jo~ao Pessoa.

Poly (lactic acid) (PLA) is widely used biodegradable thermoplastic in the additive manufacturing, mainly on manufactured products through 3D printing. However, PLA is highly fragile and presents low impact strength; hence improvements on this way are industrially and technologically important. Aiming to develop proper methodology for higher PLA performance, this work investigated the effects of thermal annealing on the mechanical properties (impact, tensile, Shore D hardness), heat deflection temperature (HDT), Vicat softening temperature (VST) and crystallinity (X-ray diffraction) of PLA. Injected specimens were annealed in greenhouses at 70, 80, 90 and 100 °C. Annealing at 70 °C was not effective, without verified significant changes. On the other hand, annealing at 80, 90 and 100 °C provided crystalline peaks in DRX, indicating development of structural organization. Expressive results were achieved, at 90 °C, for impact strength, HDT, VST, Shore D hardness and tensile strength, related to non-annealed PLA. Provided results in this work have scientific and technological importance, since the mechanical and thermomechanical properties of PLA were improved using a simple methodology which may render higher performance products mainly for the 3D printing industry of PLA.

El poli (ácido láctico) (PLA) es un termoplástico biodegradable ampliamente utilizado en la fabricación de aditivos, principalmente en productos fabricados mediante impresión 3D. Sin embargo, el PLA es muy frágil y tiene baja resistencia al impacto; por lo tanto, las mejoras en este sentido son industrial y tecnológicamente importantes. Con el fin de desarrollar una metodología adecuada para un PLA de mayor rendimiento, este trabajo investigó los efectos del recocido térmico en las propiedades mecánicas (impacto, tracción, dureza de la Shore D), temperatura de desviación térmica (HDT), temperatura de ablandamiento de Vicat (TAV) y cristalinidad (difracción de rayos X) del PLA. Las muestras inyectadas fueron recocidos en horno a 70, 80, 90 y 100°C. El recocido a 70 ° C no fue efectivo, sin cambios significativos verificados. Por otro lado, el recocido a 80, 90 y 100 ° C proporcionó picos cristalinos en la DRX, lo que indica el desarrollo de la organización estructural. Los resultados expresivos se lograron a 90°C para resistencia al impacto, HDT, VST, dureza Shore D y resistencia a la tracción, relacionados con PLA sin recocido. Los resultados presentados en este trabajo son de importancia científica y tecnológica, ya que las propiedades mecánicas y termomecánicas del PLA se han mejorado utilizando una metodología simple que puede producir productos de mayor rendimiento principalmente para la industria de impresión 3D de PLA.

References

M. Okan, H. M. Aydin, and M. Barsbay, J. Chem. Technol. Biotechnol. 94, 8 (2019).

C. B. B. Luna, D. D. Siqueira, E. da Silva Barbosa Ferreira, E. M. Araújo, and R. M. R. Wellen, Mater. Res. Express 6, 125317 (2019).

F. G. Torres, S. Rodriguez, and A. C. Saavedra, J. Polym. Environ. 27, 2651 (2019).

D. D. Siqueira, C. B. Luna, E. M. Araújo, D. D. S. M. E. A. S. Filho, and R. M. R. Wellen, Mater. Res. 22 (2019).

MATWEB, Blendas pla/pegaa: Avaliacao da reatividadeentre os polímeros e da concentracao de pegaa nas propriedades e na morfologia," (Consultada el 10 de mayo de 2020).

N. Eselini, S. Tirkes, A. O. Akar, and U. Tayfun, J. Elastomers Plast. 52, 701 (2020).

E. Teoh and W. Chow, J. Elastomers Plast. 50, 596 (2018).

V. G. Gokhare, D. N. Raut, and D. K. Shinde, A review paper on 3d-printing aspects and various processes used in the 3d-printing," (2017).

G. F. Brito, P. Agrawal, E. M. Araujo, and T. J. A. Melo, Polímeros 23, 531 (2013).

F.-C. Pai, H.-H. Chu, and S.-M. Lai, J. Elastomers Plast. 52, 53 (2020).

J. C. C. Lima, P. A. E. A. G. Araújo, and T. J. A. Mélo, Macromol. Symp. 383, 1700072 (2019).

K. Belkouicem, A. Benarab, R. Krache, R. Benavente, E. Pérez, and M. Cerrada, J. Elastomers Plast. 51, 562 (2019).

T. Takayama, M. Todo, and H. Tsuji, J. Mech. Behav. Biomed. 4, 255 (2011).

R. J. Xu, X. D. Chen, Q. Cai, C. B. Chen, Y. F. Lin, C. H. Lei, and L. B. Li, RSC Adv. 5, 27722 (2015).

T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, and J. G. Kovács, Express Polym. Lett. 4, 659 (2010).

Y. Srithep, P. Nealey, and L. S. Turng, Polym. Eng. Sci. 53, 580 (2013).

R. B. Pereira and A. R. Morales, Polímeros 24, 198 (2014).

J. F. Mano, Y. Wang, J. C. Viana, Z. Denchev, and M. J. Oliveira, Macromol. Mater. Eng. 289, 910 (2004).

M. L. Di Lorenzo, M. Cocca, and M. Malinconico, Thermochim. Acta 522, 110 (2011).

W. D. Callister., Ciencia e engenharia de materiais uma introducao. 7 ed. (LTD, 2011).

E. B. Bezerra, D. C. Franca, D. D. d. S. Morais, D. D. Siqueira, E. M. Araújo, and R. M. R. Wellen, REM: Int. Eng. J. 72, 469 (2019).

J. C. C. Lima., Blendas de poli(ácido lático) com copolímero tribloco de estireno/etileno-butileno/estireno (Dissertacao de mestrado). (Campina Grande: Departameno de Engenharia de Materiais, Univesidade Federal de Campina Grande, 2016) pp. 1-125.

M. Pastorek and A. Kovalcik, Mater. Manuf. Process. 33, 1674 (2018).

M. Pastorek and A. Kovalcik, Mater. Manuf. Process. 33, 1674 (2018).

S. D. Park, M. Todo, and K. Arakawa, J. Mater. Sci. 261, 105 (2004).

H. T. Oyama, Polymer 50, 747 (2009).

L. Yu, H. Liu, F. Xie, L. Chen, and X. Li, Polym. Eng. Sci. 48, 634 (2008).

S. Park, M. Todo, and K. Arakawa, J. Mater. Sci. 39, 1113 (2004).

C. B. B. Luna, E. da Silva Barbosa Ferreira, D. D. Siqueira, W. A. da Silva, E. M. Araujo, and R. M. R. Wellen, Mater. Res. Express 6, 115321 (2019).

E. B. Bezerra, D. C. d. Franca, D. D. d. S. Morais, I. D. d. S. Silva, D. D. Siqueira, E. M. Araujo, and R. M. R. Wellen, Polímeros 29 (2019).

D. D. d. S. Morais, D. C. Franca, E. M. Araújo, L. H. d. Carvalho, R. M. R. Wellen, A. D. d. Oliveira, and T. J. A. d. Melo, REM: Int. Eng. J. 72, 87 (2019).

M. S. Rabello and J. R. White, Polímeros 7, 47 (1997).

D. Wright, R. Dunk, D. Bouvart, and M. Autran, Polymer 29, 793 (1988).

M. Gahleitner, K. Bernreitner, W. Nei l, C. Paulik, and E. Ratajski, Polym. Test. 14, 173 (1995).

C. B. B. Luna, D. D. Siqueira, E. M. Araújo, and R. M. R. Wellen, Mater. Res. Express 6, 075316 (2019).

A. M. Harris and E. C. Lee, J. Appl. Polym. Sci. 107, 2246 (2008).

G. Perego and G. D. Cella, Mechanical properties," in Poly(Lactic Acid) (John Wiley & Sons, Ltd, 2010) Chap. 11, pp. 141-153.

How to Cite

APA

Luna, C. B. B., Siqueira, D. D., Araújo, E. M. and Wellen, R. M. R. (2021). Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. MOMENTO, (62), 1–17. https://doi.org/10.15446/mo.n62.89099

ACM

[1]
Luna, C.B.B., Siqueira, D.D., Araújo, E.M. and Wellen, R.M.R. 2021. Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. MOMENTO. 62 (Jan. 2021), 1–17. DOI:https://doi.org/10.15446/mo.n62.89099.

ACS

(1)
Luna, C. B. B.; Siqueira, D. D.; Araújo, E. M.; Wellen, R. M. R. Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. Momento 2021, 1-17.

ABNT

LUNA, C. B. B.; SIQUEIRA, D. D.; ARAÚJO, E. M.; WELLEN, R. M. R. Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. MOMENTO, [S. l.], n. 62, p. 1–17, 2021. DOI: 10.15446/mo.n62.89099. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/89099. Acesso em: 23 may. 2024.

Chicago

Luna, Carlos B. B., Danilo D. Siqueira, Edcleide M. Araújo, and Renate M. R. Wellen. 2021. “Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters”. MOMENTO, no. 62 (January):1-17. https://doi.org/10.15446/mo.n62.89099.

Harvard

Luna, C. B. B., Siqueira, D. D., Araújo, E. M. and Wellen, R. M. R. (2021) “Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters”, MOMENTO, (62), pp. 1–17. doi: 10.15446/mo.n62.89099.

IEEE

[1]
C. B. B. Luna, D. D. Siqueira, E. M. Araújo, and R. M. R. Wellen, “Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters”, Momento, no. 62, pp. 1–17, Jan. 2021.

MLA

Luna, C. B. B., D. D. Siqueira, E. M. Araújo, and R. M. R. Wellen. “Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters”. MOMENTO, no. 62, Jan. 2021, pp. 1-17, doi:10.15446/mo.n62.89099.

Turabian

Luna, Carlos B. B., Danilo D. Siqueira, Edcleide M. Araújo, and Renate M. R. Wellen. “Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters”. MOMENTO, no. 62 (January 1, 2021): 1–17. Accessed May 23, 2024. https://revistas.unal.edu.co/index.php/momento/article/view/89099.

Vancouver

1.
Luna CBB, Siqueira DD, Araújo EM, Wellen RMR. Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. Momento [Internet]. 2021 Jan. 1 [cited 2024 May 23];(62):1-17. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/89099

Download Citation

CrossRef Cited-by

CrossRef citations14

1. Edson Souza Cordeiro, Carlos Bruno Barreto Luna, Renata Arcelino da Silva, Renate Maria Ramos Wellen, Laura Hecker de Carvalho, Dayanne Diniz de Souza. (2023). On the Production of Poly(Lactic Acid) (PLA) Compounds with Metallic Stearates Based on Zinc, Magnesium and Cobalt. Investigation of Torque Rheometry and Thermal Properties. Journal of Elastomers & Plastics, 55(6), p.805. https://doi.org/10.1177/00952443231177695.

2. Edson Antonio dos Santos Filho, Carlos Bruno Barreto Luna, Danilo Diniz Siqueira, Eduardo da Silva Barbosa Ferreira, Edcleide Maria Araújo. (2021). Tailoring Poly(lactic acid) (PLA) Properties: Effect of the Impact Modifiers EE-g-GMA and POE-g-GMA. Polymers, 14(1), p.136. https://doi.org/10.3390/polym14010136.

3. Carlos Bruno Barreto Luna, Fabiano Santana da Silva, Eduardo da Silva Barbosa Ferreira, Adriano Lima da Silva, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2024). Transforming vulcanized styrene–butadiene waste into valuable raw material: an opportunity for high-impact polypropylene production. Polymer Bulletin, 81(1), p.423. https://doi.org/10.1007/s00289-023-04729-1.

4. Carlos B. B. Luna, Eduardo S. B. Ferreira, Fernanda M. Sousa, Emanuel P. Nascimento, Edcleide M. Araújo, Dayanne D. Souza, Elieber B. Bezerra, Renate M. R. Wellen. (2022). DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA). MOMENTO, (65), p.25. https://doi.org/10.15446/mo.n65.102254.

5. Edson Antônio dos Santos Filho, Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Danilo Diniz Siqueira, Edcleide Maria Araújo. (2023). Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology. Journal of Polymer Research, 30(3) https://doi.org/10.1007/s10965-023-03504-0.

6. Carlos Bruno Barreto Luna, Adriano Lima da Silva, Danilo Diniz Siqueira, Edson Antonio dos Santos Filho, Edcleide Maria Araújo, Emanuel Pereira do Nascimento, Ana Cristina Figueiredo de Melo Costa. (2022). Preparation of flexible and magnetic PA6/SEBS‐MA nanocomposites reinforced with Ni‐Zn ferrite. Polymer Composites, 43(1), p.68. https://doi.org/10.1002/pc.26357.

7. Jessika Andrade dos Santos Nogueira, Carlos Bruno Barreto Luna, Adriano Lima da Silva, Ana Cristina Figueiredo de Melo Costa, João Baptista da Costa Agra de Melo, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2023). Turning residues of coconut flour in bioadditive: an alternative to accelerate PCL biodegradation. Journal of Polymer Research, 30(9) https://doi.org/10.1007/s10965-023-03711-9.

8. Fuat KARTAL, Arslan KAPTAN. (2023). Effects of annealing temperature and duration on mechanical properties of PLA plastics produced by 3D Printing. European Mechanical Science, 7(3), p.152. https://doi.org/10.26701/ems.1290961.

9. Dragos Gabriel Zisopol, Alexandra Ileana Portoaca, Maria Tanase. (2023). Improving the Impact Resistance through Annealing in PLA 3D Printed Parts. Engineering, Technology & Applied Science Research, 13(5), p.11768. https://doi.org/10.48084/etasr.6281.

10. Mikołaj Garwacki, Igor Cudnik, Damian Dziadowiec, Piotr Szymczak, Jacek Andrzejewski. (2024). The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing—The Use of Multilayered Foil Waste as the Blend Component. Materials, 17(5), p.1083. https://doi.org/10.3390/ma17051083.

11. Budi Arifvianto, Baikhati E. Satiti, Urip A. Salim, Suyitno, Archadian Nuryanti, Muslim Mahardika. (2022). Mechanical properties of the FFF sandwich-structured parts made of PLA/TPU multi-material. Progress in Additive Manufacturing, 7(6), p.1213. https://doi.org/10.1007/s40964-022-00295-6.

12. Jaroslav Cisar, Petra Drohsler, Martina Pummerova, Vladimir Sedlarik, David Skoda. (2023). Composite based on PLA with improved shape stability under high-temperature conditions. Polymer, 276, p.125943. https://doi.org/10.1016/j.polymer.2023.125943.

13. Eduardo da Silva Barbosa Ferreira, Emanuel Pereira do Nascimento, Carlos Bruno Barreto Luna, Edson Antonio dos Santos Filho, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2023). Tailoring the performance of poly(lactic acid)‐based reactive blends: The effect of vinyl acetate and dicumyl peroxide content. Journal of Applied Polymer Science, 140(35) https://doi.org/10.1002/app.54353.

14. Mateusz Barczewski, Olga Mysiukiewicz, Jacek Andrzejewski, Danuta Matykiewicz, Katarzyna Skórczewska, Krzysztof Lewandowski, Michał Jakubowicz, Joanna Aniśko, Bartosz Gapiński, Kamila Sałasińska, Adam Piasecki, Michał Dutkiewicz. (2023). bioXpul™ - technology for manufacturing PLA-based biocomposites with increased thermomechanical stability. Manufacturing Letters, 35, p.43. https://doi.org/10.1016/j.mfglet.2022.11.007.

Dimensions

PlumX

Article abstract page views

978

Downloads

Download data is not yet available.