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ABSTRACT
New variants of the adaptive competitive differential evolution algorithm are proposed and tested experimentally on the CEC 2013

test suite. In the new variants, the adaptation is based on the competition of several strategies. The current-to-pbest mutation borrowed
from JADE is included into the pool of the competing strategies in newly proposed variants. The aim of the experimental comparison
is to find whether the presence of the current-to-pbest mutation strategy increases the efficiency of the differential evolution algorithm,
especially on rotated objective functions. The results of the experiments show that the new variants performed better in a few of the test
problems, while the benefit is not observed in the majority of the test problems.
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1. INTRODUCTION

This paper is an extended version of the conference sub-
mission [2]. Compared to [2], two other pools of competing
strategies are proposed and all the variants of the algorithm
are compared experimentally on the CEC 2013 benchmark
suite [5].

Differential evolution (DE) proposed in [9] is a po-
pulation-based optimization algorithm for single-objective
problems with a real-valued objective function. The pos-
sible solutions are represented as vectors with real-number
components, ~x = (x1, x2, , . . . ,xD), D is the dimension of
the problem. The population is placed in the search space
Ω = ∏

D
j=1[a j, b j], a j < b j, j = 1, 2, , . . . ,D and evolves

during the search to the state of higher fitness. The solution
of the problem is the global minimum point ~x∗ satisfying
condition f (~x∗)≤ f (~x), ∀~x ∈Ω.

Algorithm 1 Differential evolution algorithm
initialize population P = {~x1,~x2, . . . ,~xN}
while stopping condition not reached do

for i = 1,2, . . . ,N do
create a new trial vector~y
if f (~y)≤ f (~xi) then

insert~y into Q
else

insert~xi into Q
end if

end for
P← Q

end while

The population of size N is developed step-by-step from
a generation P to a generation Q by application of evolu-
tionary operators, i.e. mutation, crossover, and selection.
The basic scheme of DE algorithm written in pseudo-code
is shown in Algorithm 1. The new trial point is created from
a mutant point~u generated by using a kind of mutation and
from the current point of the population by the application
of the crossover. Fitter point from the pair of (~xi, ~y), based

on the value of the objective function, is selected to the new
generation Q.

The DE algorithm has been studied intensively in recent
period. Comprehensive summary of advanced results in DE
research is available in [7] and [3]. Several kinds of muta-
tion and crossover were suggested as well as some adaptive
or self-adaptive DE variants. The main goal of designing
adaptive variants of DE is to enable the adaptation of the
search carried out during the run of the DE algorithm to the
current problem to be solved.

The new test suite of 28 functions was proposed for
the special session on Real-Parameter Optimization, a part
of Congress on Evolutionary Computation (CEC) 2013.
This session was held as a competition of stochastic single-
objective optimization algorithms. The functions are de-
scribed in the report [5], including the experimental settings
required for the competition. The source code of the func-
tions is also available at the web site given in the report.
The benchmark functions can be used at several levels of
problem dimension varying from 2 to 100. We can expect
that this test suite will become one of the most relevant
benchmark required for publishing new single-objective
optimization algorithms.

We took part in the CEC 2013 special session mentioned
above with the paper [13], where an adaptive version of dif-
ferential evolution based on the competition of DE strate-
gies was applied [12]. Our DE variant was ranked in the
first half of 21 compared algorithms with respect to their
efficiency. This DE variant performs well on the problems,
where the objective function is not rotated, whilst the per-
formance in the problems with rotated functions is worse.
Similar difficulties with the rotated functions occurred in
all DE variants taking part in the CEC 2013 competition
including the best performing DE variant of SHADE [10].

In this paper, novel variants of the competitive DE com-
bining two adaptive approaches are proposed and compared
experimentally with the “parental” algorithms [12, 18] on
the CEC 2013 test suite.

The rest of the paper is organized as follows. In Section
2 the “parental” algorithms are described. Three new adap-
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tive DE variants are proposed in Section 3. Experimental
setup is defined in Section 4. The results are presented in
Section 5 and the last section concludes the paper.

2. SOME ADAPTIVE VARIANTS OF DIFFEREN-
TIAL EVOLUTION

It is know that standard DE can be a very efficient opti-
mization algorithm but the efficiency is strongly dependent
on the setting of the control parameters F and CR for the
problem to be solved. The tuning of the control parameters
by trial-and-error method is time-consuming. Hence many
adaptive or self-adaptive DE variants have been proposed
in last decade.

Seven adaptive DE variants [1, 6, 8, 12, 15, 18] were ex-
perimentally compared on six standard benchmark func-
tions at three levels of dimension in [14]. It was found
that JADE [18] and b6e6rl [12] were the best performing
algorithms in the comparison, JADE was the fastest and the
second reliable in average, while the b6e6rl was the most
reliable and the second in convergence speed. That is why
these “parental” algorithms are exploited in the proposed
new variants.

2.1. JADE

JADE variant of adaptive differential evolution [18] ex-
tends the original DE concept with three different improve-
ments – current-to-pbest mutation, a new adaptive control
of parameters F and CR, and archive. The mutant vector ~u
is generated in the following manner:

~u =~xi +F (~xpbest−~xi)+F (~xr1−~xr2), (1)

where~xpbest is randomly chosen from 100 p% best individ-
uals with input parameter p = 0.05 recommended in [18].
The vector ~xr1 is randomly selected from P (r1 6= i), ~xr2 is
randomly selected from the union P

⋃
A (r2 6= i 6= r1) of the

current population P and the archive A. In every generation,
parent individuals replaced by better offspring individuals
are put into the archive and the archive size is reduced to N
individuals by randomly dropping surplus individuals. The
trial vector is generated from ~u and ~xi using the binomial
crossover. CR and F are independently generated for each
individual~xi, CR is generated from the normal distribution
of mean µCR and standard deviation 0.1, truncated to [0,1].
F is generated from Cauchy distribution with location pa-
rameter µF and scale parameter 0.1, truncated to 1 if F > 1
or regenerated if F < 0, see [18] for details of µCR and µF
adaptation.

2.2. Competitive DE

Competitive DE uses H strategies with their control-
parameter values held in the pool [11,12]. Any of H strate-
gies can be chosen to create a new trial point~y. A strategy is
selected randomly with probability qh, h = 1,2, . . . ,H. The
values of probability are initialized uniformly, qh = 1/H,
and they are modified according to the success rate in the
preceding steps. The hth strategy is considered successful
if it produces a trial vector entering into next generation.

Probability qh is evaluated as the relative frequency of suc-
cess according to

qh =
nh +n0

∑
H
j=1(n j +n0)

, (2)

where nh is the current count of the hth setting successes,
and n0 > 0 is an input parameter. The setting of n0 > 1
prevents from a dramatic change in qh by one random suc-
cessful use of the hth strategy. To avoid degeneration of
the search process, the current values of qh are reset to their
starting values if any probability qh decreases below some
given limit δ , δ > 0.

We use a variant of competitive DE that appeared well-
performing and robust in different benchmark tests [12].
In this variant, denoted b6e6rl hereafter, 12 strategies are
in competition (H = 12), six of them using the binomial
crossover, rest of them using the exponential crossover.

The randrl/1 mutation (3) is applied in all the strate-
gies, two different values of control parameter F are used,
F = 0.5 and F = 0.8.

~u =~rx
1 +F (~rx

2−~rx
3) , (3)

where the point~rx
1 is tournament best among~r1,~r2, and~r3,

i.e. f (~rx
1)≤ f (~rx

j), j = 2,3, as proposed in [4].
The mutation according to (3) can cause that a mutant

point~u moves out of the domain Ω. In such a case, the val-
ues of u j 6∈ [a j, b j] are turned over into Ω by using trans-
formation u j ← 2a j− u j or v j ← 2b j− u j for the violated
component. The same treatment of the mutation points es-
caping the Ω is also used in newly proposed algorithms.

The binomial crossover uses three different values of
CR, CR ∈ {0,0.5,1}. The values of CR for the exponen-
tial crossover are evaluated from given values of mutation
probability pm as real roots of polynomial equation [17]

CRD− D pm CR+ D pm−1 = 0. (4)

Three values of pm used in this DE variant are set up
equidistantly in the interval (1/D,1). Details of the CR set-
ting for the exponential crossover can be found e.g. in [14].

3. NEWLY PROPOSED VARIANTS OF COMPETI-
TIVE DE

The adaptive mechanism based on the competition of
strategies described in Section 2.2 is applied in all the newly
proposed adaptive DE variants. The new variants differs
only in the combination of DE strategies available in the
pools from which the strategies are selected. Some strate-
gies in the pools of competing strategies are derived from
JADE, especially they exploit the current-to-pbest muta-
tion.

3.1. b6e6pbest

This adaptive variant of DE (denoted b6e6pbest here-
after) is similar to b6e6rl but the mutation randrl/1 is re-
placed by the current-to-pbest mutation used in JADE. It is
expected that application of the current-to-pbest mutation
can help in the solution of rotated functions. An archive
from JADE storing the old best solutions is also applied.
The new algorithm is shown in pseudo-code in Algorithm 2.
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Algorithm 2 Competitive DE algorithm b6e6pbest
initialize population P = {~x1,~x2, . . . ,~xN}
initialize empty archive A of the size N
initialize probabilities of strategies
while stopping condition not reached do

for i = 1,2, . . . ,N do
choose a strategy by a roulette selection
create a new trial vector~y
if f (~y)≤ f (~xi) then

insert~y into Q
insert~x into A
update the value of probability of used strategy

else
insert~xi into Q

end if
end for
P← Q

end while

The population P of size N is initialized randomly uni-
formly distributed in the area of the possible solutions. In
addition, the empty archive A of the size N for the stor-
age the old solutions is also initialized. When the new trial
point is inserted into next generation Q, the old solution ~xi
is stored in the archive A. If the archive is full, a randomly
selected point in the A is replaced by the current ~xi. The
parameters controlling the competition of strategies are set
to the recommended values: δ = 1/(5×H), n0 = 2 and the
control parameter of mutation p = 0.05.

3.2. b3e3j6-F05

Twelve DE strategies are included into the competition
in this algorithm (denoted b3e3j6-F05 hereafter), six strate-
gies use the randrl mutation like the b6ee6rl algorithm and
in the other strategies the current-to-pbest mutation is used.
Mutation parameter F is set up to 0.5 in all the twelve DE
strategies. This setting is supposed to be helpful by more
intensive search in the neighborhood of the current point.
The CR parameters for the both types of the crossover are
set up to the same values applied in the b6e6rl.

3.3. b3e3j6-F05F08

Like in the algorithms described before, twelve DE
strategies are also included into the competition of the
strategies in this algorithm labeled b3e3j6-F05F08 here-
after. Six strategies use the randrl mutation with F = 0.5,
three of them in combination with the binomial crossover,
three of them with the exponential crossover. The other
strategies use the current-to-pbest mutation with F = 0.8
combined with the binomial and exponential crossover. The
higher value of F in half of the competing strategies should
keep the population more dispersed compare to b3e3j6-
F05. The CR parameters for the both types of the crossover
are also set up to the values applied in the b6e6rl.

4. EXPERIMENTS

The aim of the experiments is to compare the perfor-
mance of the proposed variants with the parental JADE and

b6e6rl algorithms. The algorithms are implemented in Mat-
lab 2010a and this environment was used for experiments.
Experimental setting follows the requirements given in the
report [5], where the suite of 28 benchmark minimization
problems is also defined. The function values f (~x∗) are also
given in [5]. Thus, the obtained value of the function error
fmin− f (~x∗) can be calculated for each run, where fmin is
the minimum function value in the population at the end of
the search. The source code of the test functions in C was
downloaded from the web page given in [5] and compiled
by Lcc-win32 C 2.4.1 compiler. Search range (domain) for
all the test functions is [−100,100]D.

The tests were carried out at two levels of dimension,
D = 10 and D = 30. For each test problem, 51 repeated
runs were performed. The run stops if the prescribed value
of MaxFES = D · 104 is reached or if the minimum func-
tion error in the population is less than 10−8 because such a
value of the error is considered sufficient for an acceptable
approximation of the correct solution. The values of the
function error less than 10−8 are treated as zero in further
processing.

The population size was set up to N = 100 for all the al-
gorithms and the problem dimension. The remaining con-
trol parameters of the algorithms were set up to the recom-
mended values described in Section 2 and 3.

5. RESULTS

The basic characteristics of the experimental compari-
son of the algorithms are presented in Tables 3-11. The
structure of the characteristics follows the requirements
given in Report [5]. The values of characteristics for each
problem are counted from 51 repeated runs. The values of
the function errors less than 10−8 are substituted by zero in
all the tables.

The efficiency of the five algorithms expressed by the
values of the function error found in each of 51 runs was
compared statistically by Kruskal-Wallis non-parametric
analysis of variance. Kruskal-Wallis multiple comparison
of the algorithms was applied to the results of the problems
where a significant difference among the algorithms was
found. The results of the comparison are shown in Table 1.
If there is an algorithm significantly better than the others,
it is evaluated as the winner in the corresponding problem.
If there are two or more algorithms on the winning posi-
tion and these algorithms are not different significantly, the
wining position is shared by all of them, ordered in the de-
creasing sequence of their performance.

The counts of wins and shared wins across all the prob-
lems are summarized in Table 2, the problems with the no
significant difference are not taken into account. Based on
the results in Table 2, we can conclude that JADE is the
best performing algorithm most frequently but each algo-
rithm in the comparison is winning in some problems at
least once and the shared wins were obtained several times
by each algorithm. Among the newly proposed DE vari-
ants, b6e6pbest performs best in average (20 wins or shared
wins out of 56 problems).
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Table 1 Comparison of algorithm performance by Kruskal-Wallis test – best performing algorithms.

F D = 10 D = 30
1 b6e6pbest, b6e6rl, JADE b6e6rl, JADE, b6e6pbest
2 b6e6pbest, b6e6rl, JADE JADE
3 b6e6pbest b3e3j6F05F08
4 b6e6pbest, b6e6rl, JADE b6e6pbest
5 b6e6pbest, b6e6rl, JADE b6e6rl, JADE, b6e6pbest
6 b6e6rl JADE, b6e6pbest
7 b3e3j6F05 JADE
8 No significant difference All except b3e3j6F05
9 b3e3j6F05, JADE, b6e6pbest JADE

10 JADE b3e3j6F05F08, b6e6rl
11 b6e6pbest, b6e6rl, JADE JADE, b6e6rl, b6e6pbest
12 JADE JADE
13 JADE, b3e3j6F05 JADE
14 JADE, b6e6rl b6e6rl, JADE
15 JADE JADE
16 b3e3j6F05 b6e6rl, JADE, b3e3j6F05
17 No significant difference All except b3e3j6F05
18 JADE JADE
19 JADE JADE
20 b3e3j6F05, JADE, b6e6pbest JADE
21 b6e6rl, b3e3j6F05F08 All except JADE
22 JADE JADE
23 JADE JADE
24 b3e3j6F05 b3e3j6F05F08, JADE, b3e3j6F05
25 b3e3j6F05 b3e3j6F05, b6e6pbest, b3e3j6F05F08
26 JADE JADE, b6e6pbest
27 b3e3j6F05, b6e6pbest b6e6pbest, b3e3j6F05
28 b3e3j6F05F08, b6e6rl No significant difference

Table 2 Counts of the best and the shared best positions
according to Kruskal-Wallis multiple comparison.

D Algorithm #Best #Shared
JADE 8 9
b6e6rl 1 8

D = 10 b6e6pbest 1 8
b3e3j6-F05 4 4
b3e3j6-F05F08 0 2
JADE 11 10
b6e6rl 0 9

D = 30 b6e6pbest 1 10
b3e3j6-F05 0 5
b3e3j6-F05F08 1 6

None of the five algorithms copes well with all the test
problems. There are problems, where the error of the best
solution found by the algorithm in the prescribed number of
the function evaluations has the magnitude of 102, see Ta-
bles 3-11. Especially for the composition functions (prob-
lems F21 to F28) no algorithm tested here is able to find a
better solution. It is not surprising because the composite
functions are very difficult tasks for all optimization algo-
rithms. Moreover, the performance of DE algorithms in
some problems with rotated objective function (F2 - F4, F6
- F10, F12, F13, F15, F16, F18, F20, F21, F23 - F28) is not
satisfactory.

6. CONCLUSIONS

The experimental comparison showed that newly pro-
posed variants of the competitive DE algorithm do not
outperformed the “parental” JADE algorithm, when aver-
age performance on the CEC 2013 suite problems is taken
into account. Among the newly proposed DE variants,
b6e6pbest performs best in average (20 wins or shared wins
out of 56 test problems), while JADE achieved 38 wins in-
cluding shared wins.

However, there are optimization problems, where some
newly proposed DE variants performed well. Each of the
newly proposed algorithm wins at least in one problem of
the CEC 2013 test suite and the shared wins are obtained
several times by each algorithm. It indicates that for a spec-
ified optimization problem a special combination of com-
peting DE strategies in the pool is more convenient for the
convergence than other combination. Such behavior of the
algorithms found experimentally is in agreement with the
results of No-Free-Lunch theorem [16] but its benefit of the
result is limited for application in the solution of real-world
optimization problems.

It was found that all the tested DE variants do not per-
form well on the most of the problems with rotated ob-
jective function. The inclusion of current-to-pbest strategy
into the competitive adaptive DE does not bring sufficient
enhancement of the performance in these problems. Thus,
the proposal of an innovated algorithm with the pool of
strategies increasing the efficiency of DE on rotated func-
tions remains the challenge for further research.
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M., AND ŽUMER, V. Self-adapting control param-
eters in differential evolution: A comparative study
on numerical benchmark problems. In IEEE Trans-
actions on Evolutionary Computation (2006), vol. 10,
pp. 646–657.
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Table 3 Basic Characteristics of function error, b6e6rl,
D = 10.

F Best Worst Median Mean Std

1 0 0 0 0 0

2 0 0 0 0 0

3 0 6.31503 1.86E-02 2.87E-01 1.2313

4 0 0 0 0 0

5 0 0 0 0 0

6 0 9.81242 0 1.3468 3.41021

7 1.38E-02 1.81E-01 5.95E-02 6.54E-02 3.77E-02

8 20.1802 20.503 20.3583 20.3593 7.49E-02

9 9.86E-01 6.19913 4.85471 4.62035 9.37E-01

10 1.30E-02 1.42E-01 9.82E-02 9.76E-02 2.95E-02

11 0 0 0 0 0

12 5.97046 16.3914 12.3216 11.9187 2.63228

13 5.26893 20.4302 13.3977 13.4186 3.9391

14 0 6.25E-02 0 9.80E-03 2.29E-02

15 392.73 1113.48 882.615 849.553 158.593

16 5.89E-01 1.56243 1.06043 1.04941 1.97E-01

17 10.1224 10.1224 10.1224 10.1224 1.26E-14

18 21.8359 37.55 30.6852 30.7071 3.15786

19 2.93E-01 5.74E-01 4.26E-01 4.34E-01 6.25E-02

20 1.91115 3.42677 2.69786 2.64982 2.98E-01

21 200 400.194 400.194 368.791 73.5293

22 5.01559 102.082 18.3968 20.4875 17.4553

23 381.812 1193.88 918.923 886.649 162.68

24 111.881 209.192 206.295 200.658 18.0154

25 114.992 205.743 200.109 197.841 16.6632

26 106.565 200.017 200.017 156.718 44.6596

27 300.005 473.986 300.039 303.462 24.3558

28 100 300 300 268.628 73.458

Table 4 Basic Characteristics of function error, JADE,
D = 10.

F Best Worst Median Mean Std

1 0 0 0 0 0

2 0 0 0 0 0

3 0 1519.65 8.69072 65.3855 218.05

4 0 8098.3 0 218.682 1203.94

5 0 0 0 0 0

6 0 9.81242 9.81242 6.92641 4.51547

7 6.14E-12 9.45E-01 2.25E-02 1.00E-01 1.77E-01

8 20.1364 20.4517 20.3788 20.3607 7.47E-02

9 1.45291 5.29509 3.8035 3.83377 8.22E-01

10 5.10E-03 4.32E-02 1.91E-02 2.00E-02 9.22E-03

11 0 0 0 0 0

12 2.27093 7.24048 4.43965 4.43427 1.23165

13 1.07571 10.7264 4.55144 4.95621 2.29185

14 0 6.25E-02 0 4.90E-03 1.70E-02

15 243.289 740.153 477.817 492.932 115.477

16 7.22E-01 1.5008 1.08145 1.11877 2.13E-01

17 10.1224 10.1224 10.1224 10.1224 1.26E-14

18 15.0662 22.4264 18.4838 18.34651 1.71822

19 2.57E-01 4.01E-01 3.34E-01 3.38E-01 3.67E-02

20 1.49735 3.18457 2.27887 2.29143 4.40E-01

21 200 400.194 400.194 396.267 28.0328

22 9.66E-08 100.001 1.26786 5.93799 14.266

23 220.144 842.444 448.01 480.143 145.998

24 108.49 210.404 200.151 198.064 18.2606

25 128.095 206.964 200.807 199.924 10.8532

26 101.575 200.017 107.198 136.021 43.7897

27 300 301.258 300.075 300.167 2.48E-01

28 100 300 300 296.078 28.0056

Table 5 Basic Characteristics of function error, b6e6pbest,
D = 10.

F Best Worst Median Mean Std

1 0 0 0 0 0

2 0 0 0 0 0

3 0 7.14E-02 0 3.69E-03 1.42E-02

4 0 0 0 0 0

5 0 0 0 0 0

6 0 9.81242 9.81242 5.77201 4.87727

7 1.71E-04 8.71E-02 9.16E-03 1.31E-02 1.56E-02

8 20.1905 20.5061 20.3834 20.3698 6.77E-02

9 8.81E-02 6.26927 4.24983 3.93156 1.32163

10 8.14E-03 1.07E-01 4.65E-02 4.78E-02 1.78E-02

11 0 0 0 0 0

12 9.30E-01 9.40186 6.41642 6.48988 1.61251

13 3.38757 11.4131 6.83866 6.9651 1.88697

14 5.71E-05 2.17E-01 6.36E-02 7.44E-02 5.53E-02

15 430.339 992.613 754.327 753.255 143.513

16 5.27E-01 1.32219 9.24E-01 9.40E-01 1.92E-01

17 7.77E-03 10.1224 10.1224 9.92407 1.41633

18 16.9116 28.6776 24.2728 23.7399 2.49952

19 2.99E-01 5.29E-01 4.00E-01 4.03E-01 4.91E-02

20 1.6708 3.12941 2.28349 2.31911 3.55E-01

21 200 400.194 400.194 392.343 39.2459

22 7.87E-01 64.6129 15.2422 19.9918 13.8066

23 130.891 1078.12 769.183 756.324 182.338

24 200 208.648 200.002 201.629 2.98218

25 108.444 210.757 200.007 197.137 17.4591

26 102.769 200.017 200.017 156.002 47.1613

27 300 488.129 300 310.663 43.0999

28 100 300 300 292.157 39.2078

Table 6 Basic Characteristics of function error, b3e3j6-F05F08,
D = 10.

F Best Worst Median Mean Std

1 0 0 0 0 1.40E-09

2 0 0 0 0 1.24E-09

3 0 6.31503 1.71E-06 3.74E-01 1.50003

4 0 0 0 0 1.72E-09

5 0 1.00E-08 0 0 1.18E-09

6 0 9.81242 0 1.1544 3.19292

7 3.64E-03 2.20E-01 2.57E-02 3.76E-02 3.83E-02

8 20.1802 20.4784 20.3738 20.3582 7.81E-02

9 5.08E-05 5.9947 4.54293 4.1065 1.57131

10 3.71E-02 1.69E-01 8.21E-02 8.47E-02 2.9E-02

11 0 0 0 0 1.27E-09

12 5.4376 15.6135 10.8879 10.5908 2.53997

13 4.05796 20.0459 11.2484 11.7068 3.53416

14 0 1.25E-01 9.30E-09 1.71E-02 3.08E-02

15 411.039 1191.54 817.837 825.65 164.593

16 5.75E-01 1.42941 1.04439 1.02629 1.79E-01

17 10.1224 10.1224 10.1224 10.1224 1.26E-14

18 24.0478 38.78 30.8158 31.0845 3.48422

19 1.73E-01 5.44E-01 4.31E-01 4.29E-01 6.53E-02

20 2.07821 3.0021 2.40051 2.47522 2.34E-01

21 200 400.194 400.194 376.642 65.1423

22 8.84177 105.327 15.7225 19.7737 17.0032

23 296.241 1171.94 813.22 793.93 166.582

24 109.178 210.012 200.024 197.523 21.9362

25 200.005 207.393 200.029 200.977 1.95775

26 105.397 200.017 116.914 153.253 44.6511

27 300.003 433.417 300.013 306.553 26.687

28 100 300 300 264.706 77.0027
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Table 7 Basic Characteristics of function error, b3e3j6-F05,
D = 10.

F Best Worst Median Mean Std

1 0 0 0 0 1.34E-09

2 0 0 0 0 1.63E-09

3 0 7.14E-02 9.27E-05 5.71E-03 1.69E-02

4 0 0 0 0 1.69E-09

5 0 0 0 0 1.53E-09

6 0 9.81242 0 4.23281 4.90813

7 2.01E-06 3.56E-02 8.79E-04 2.71E-03 5.33E-03

8 20.1423 20.5075 20.3589 20.3542 6.58E-02

9 4.52E-05 5.62605 4.03215 3.23972 1.81617

10 1.15E-08 9.16E-02 4.35E-02 4.42E-02 2.11E-02

11 0 0 0 0 1.54E-09

12 3.19987 8.65935 6.01094 6.14313 1.20528

13 1.87848 11.0887 5.78544 5.63428 1.98031

14 0 1.24E-01 0 3.06E-02 4.21E-02

15 323.745 971.289 726.682 700.799 147.735

16 4.92E-01 1.26998 9.45E-01 9.30E-01 1.75E-01

17 10.1224 10.1224 10.1224 10.1224 1.26E-14

18 14.2817 30.1423 23.7402 23.677 2.87485

19 3.00E-01 5.09E-01 3.77E-01 3.84E-01 4.78E-02

20 1.62304 3.34076 2.18941 2.24119 3.87E-01

21 200 400.194 400.194 392.343 39.2459

22 5.953E-01 27.1744 11.6738 12.7597 5.3465

23 337.038 1224.32 736.82 714.077 197.034

24 107.524 207.33 200 196.213 19.7732

25 200 204.54 200 200.268 1.07861

26 103.52 200.017 200.017 158.229 46.712

27 300 400 300 301.961 14.0028

28 100 300 300 292.157 39.2078

Table 8 Basic Characteristics of function error, b6e6rl,
D = 30.

F Best Worst Median Mean Std

1 0 0 0 0 0

2 16174.1 175651 57806.1 74639.9 43437.4

3 1.10E-02 588497 21.2778 13494.7 82336.7

4 8.08E-04 3.42E-01 2.57E-02 5.18E-02 6.91E-02

5 0 0 0 0 0

6 2.72E-02 26.4074 6.14E-01 2.69317 7.00534

7 4.71078 49.9142 24.2584 25.6147 11.019

8 20.7806 21.0382 20.9459 20.9423 5.15E-02

9 25.5287 30.9064 29.1343 28.7904 1.44861

10 0 4.67E-02 2.46E-02 2.25E-02 1.29E-02

11 0 0 0 0 0

12 59.2826 114.541 87.5171 86.6021 11.3868

13 84.8923 154.892 118.814 117.396 16.7668

14 0 6.25E-02 2.08E-02 2.37E-02 1.82E-02

15 3909.92 5448.6 4700.77 4656.8 307.573

16 4.07E-01 2.43137 1.981 1.88839 4.22E-01

17 30.4337 30.4338 30.4337 30.4337 2.72E-05

18 136.394 208.337 177.157 176.758 13.9437

19 1.63763 2.03302 1.86691 1.8499 1.13E-01

20 10.6751 12.4114 11.8067 11.8146 3.24E-01

21 200 443.544 300 291.998 83.926

22 31.5253 150.216 124.172 123.035 21.1747

23 4098.14 5564.91 4977.98 4920.14 376.015

24 218.451 281.427 258.063 256.869 15.1052

25 234.863 295.799 282.212 274.477 18.3494

26 200.002 372.637 200.007 206.666 33.2902

27 930.157 1081.53 1021.94 1017.8 38.0067

28 300 300 300 300 0

Table 9 Basic Characteristics of function error, JADE,
D = 30.

F Best Worst Median Mean Std

1 0 0 0 0 0

2 761.617 34624.7 5211.6 7916.56 6901.76

3 0 9.20E+06 1.80499 564773.1 1.91E+06

4 0 37183.5 1.90E-06 3255.48 9176.52

5 0 0 0 0 3.70E-14

6 0 26.4074 0 2.07117 7.17025

7 4.56E-11 18.3384 2.07641 3.26158 3.71848

8 20.6911 21.0282 20.9337 20.9277 6.30E-02

9 21.4688 29.4765 26.9748 26.7183 1.64676

10 0 1.40E-01 3.69E-02 4.29E-02 2.74E-12

11 0 0 0 0 0

12 12.9951 31.1811 23.4249 23.6092 3.88487

13 17.0193 72.4851 51.615 48.6136 13.1959

14 0 8.33E-02 2.08E-02 2.86E-02 2.46E-02

15 2406.77 3783.8 3288.82 3274.999 309.786

16 1.30E-01 2.73021 1.80939 1.71086 6.20E-01

17 30.4337 30.4337 30.4337 30.4337 2.51E-14

18 61.7734 87.8341 77.0715 76.3183 6.18966

19 1.17009 1.66714 1.43957 1.44109 1.24E-01

20 8.34224 13.2213 10.1325 10.1618 7.84E-01

21 200 443.544 300 312.713 64.2801

22 6.98227 136.709 105.853 88.3946 36.2618

23 2626.44 4537.7 3513.19 3502.51 403.123

24 200.568 264.632 207.894 211.072 10.6093

25 235.557 291.657 281.352 276.363 13.4536

26 200 354.232 200.001 213.461 41.203

27 309.479 1033.09 743.386 688.174 219.546

28 300 1306.51 300 319.736 140.94

Table 10 Basic Characteristics of function error, b6e6pbest,
D = 30.

F Best Worst Median Mean Std

1 0 0 0 0 3.18E-14

2 2249.91 54497.4 15039 16644.35 11008.9

3 6.44E-08 3.09E+06 2210.58 165954 491649

4 0 1.44E-05 2E-07 1.14E-06 2.54E-06

5 0 0 0 0 0

6 0 26.4074 0 2.58896 7.93085

7 5.73E-01 36.9534 6.05583 9.47878 8.85171

8 20.7537 21.0194 20.9484 20.9315 5.98E-02

9 22.9838 31.6138 28.1173 27.923 1.98579

10 0 1.48E-01 3.69E-02 3.45E-02 2.28E-02

11 0 0 0 0 1.54E-14

12 30.3004 62.5271 45.6549 46.4292 7.91358

13 49.9074 114.544 82.6618 81.87181 15.0246

14 4.20E-01 2.71392 1.13911 1.24838 6.19E-01

15 3584.11 4928.12 4225.56 4223.14 300.524

16 9.58E-01 2.25823 1.78226 1.7925 2.721E-01

17 30.4337 30.4338 30.4337 30.4337 1.40E-05

18 87.7383 137.811 120.229 117.283 11.87165

19 1.26489 1.79963 1.5872 1.58811 1.19E-01

20 9.61117 11.7956 10.9697 10.8991 4.56E-01

21 200 443.544 300 299.841 79.4283

22 26.1122 152.658 119.885 119.606 26.8395

23 3667.03 5451.67 4385.2 4449.63 418.725

24 201.35 267.758 210.287 213.571 12.9728

25 202.194 287.899 246.684 250.746 14.6862

26 200 323.27 200.001 221.84 44.7631

27 306.566 1012.59 416.414 488.991 204.007

28 300 300 300 300 0
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Table 11 Basic Characteristics of function error, b3e3j6-F05F08,
D = 30.

F Best Worst Median Mean Std

1 0 0 0 0 8.21E-10

2 2340.23 80295 21657.1 25671.9 15445.4

3 2.21E-06 36729.6 7.45E-03 742.942 5141.16

4 4.02E-07 5.57E-04 4.53E-05 8.69E-05 1.21E-04

5 0 0 0 0 6.96E-10

6 0 26.4074 0 5.69571 10.9694

7 5.87E-01 29.6898 4.60281 6.75794 6.2968

8 20.796 21.0417 20.9436 20.9446 5.22E-02

9 24.2353 31.8769 28.564 28.4967 1.4852

10 0 5.17E-02 1.48E-02 1.82E-02 1.19E-02

11 0 0 0 0 9.31E-10

12 54.7313 105.007 77.0414 76.4243 11.2371

13 58.5736 129.195 102.306 98.8592 16.5599

14 0 1.04E-01 4.16E-02 4.45E-02 3.03E-02

15 3780.15 5227.68 4610.19 4596.19 325.023

16 1.35655 2.49484 1.96029 1.96159 2.70E-01

17 30.4337 30.4338 30.4337 30.4337 3.25E-05

18 112.661 193.56 161.638 160.769 14.0341

19 1.57246 1.96792 1.82256 1.8129 9.33E-02

20 10.4852 12.1487 11.5357 11.5241 3.30E-01

21 200 443.544 300 289.183 81.1014

22 38.2279 146.836 116.805 118.963 18.8069

23 3904.54 5492.62 4865.36 4805.72 353.329

24 200.596 278.556 207.09 213.686 16.7666

25 232.459 292.798 247.495 255.291 18.8019

26 200 369.029 200.003 217.159 48.1377

27 317.889 1098.11 851.357 770.104 232.374

28 300 300 300 300 0

Table 12 Basic Characteristics of function error, b3e3j6-F05,
D = 30.

F Best Worst Median Mean Std

1 0 0 0 0 7.09E-10

2 10484.3 426505 42174.7 62585.87 68067.6

3 1.53E-05 5.77E+07 206652 2.32E+06 8.47E+06

4 3.45E-03 9.05E-01 3.42E-02 8.84E-02 1.60E-01

5 0 0 0 0 5.47E-10

6 0 26.4074 9.21941 8.83969 7.04633

7 6.41E-02 24.4607 5.0392 7.28517 6.46305

8 20.8224 21.0271 20.9569 20.9507 4.82E-02

9 24.551 30.8601 28.1414 27.88154 1.4936

10 0 1.63E-01 3.70E-02 4.46E-02 3.15E-02

11 0 0 0 0 8.18E-10

12 24.1928 68.6998 43.2775 44.793 10.5106

13 28.5002 99.0808 69.9944 70.5154 15.1454

14 0 1.46E-01 6.25E-02 5.84E-02 3.23E-02

15 3394.96 4928.23 4153.28 4156.85 352.415

16 8.52E-01 2.29457 1.82908 1.8329 2.68E-01

17 30.4337 30.4338 30.4337 30.4337 4.60E-05

18 98.9106 138.029 117.858 116.917 9.08682

19 1.30075 1.85484 1.53537 1.55755 1.24E-01

20 9.84115 11.7368 11.08 10.9825 4.54E-01

21 200 443.544 300 300.094 69.8904

22 18.9138 139.54 113.979 109.86 24.5708

23 2824.29 5166.48 4522.45 4437.44 444.427

24 201.107 244.428 212.776 213.524 8.64678

25 238.777 270.243 246.826 247.716 5.87706

26 200.001 361.121 200.002 216.924 43.7073

27 304.818 969.763 408.779 507.766 209.258

28 300 300 300 300 0
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