Skip to main content
Log in

Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A maximum Al3+-substitution has been demonstrated to be 45 mole% of (M + Al) in the brucite layer of hydrotalcites. The chemical composition of the highly substituted hydrotalcites can be typically represented by [M0.55Al0.45(OH)2] [(CO3)0.225 · 0.50H2O] where M = Mg, Ni, Zn, and Co. It showed the small lattice parameters of a0 3.05–2.98 A in the hexagonal lattice, which corroborates Al3+-substitution in the brucite layer. The simultaneous thermal analyses (TG and DTA) and mass spectrometry (MS) study have been performed. The highly Al3+-substituted hydrotalcites also showed quite different isotherms for the CO2 adsorption. These materials adsorbed CO2 gas by removing water within the interlayer and showed the selectivity for CO2 adsorption: Cu–Al ∼Zn—Al < Co—Al < Mg—Al < Ni—Al. The Mg—Al and Co—Al hydrotalcite-like compounds showed a doubled amount of CO2 by removing carbonate ions within the interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tsuji and S. Komarneni J. Mater. Res. 4, 698 (1989).

    Article  CAS  Google Scholar 

  2. S. Komarneni and M. Tsuji J. Am. Ceram. Soc. 72, 1668 (1989).

    Article  CAS  Google Scholar 

  3. M. Tsuji S. Komarneni and P. Malla J. Am. Ceram. Soc. 74, 254 (1991).

    Article  Google Scholar 

  4. M.C. Gastuche G. Brown and M.M. Mortland Clay Mineral. 7, 177 (1967).

    Article  Google Scholar 

  5. R. Allmann Acta Crystallogr. B24, 972 (1968).

    Article  Google Scholar 

  6. L. Bish and G. W. Brindley Am. Mineral. 62, 458 (1977).

    CAS  Google Scholar 

  7. S. Miyata and T. Hirose Clays Clay Mineral. 26, 441 (1978).

    Article  CAS  Google Scholar 

  8. G. W. Brindley and S. Kikkawa Am. Mineral. 64, 836 (1979).

    CAS  Google Scholar 

  9. S. Miyata Clays Clay Mineral. 28, 50 (1980).

    Article  CAS  Google Scholar 

  10. T. Yamaoka M. Abe and M. Tsuji Mater. Res. Bull. XXIV 1183 (1989).

    Article  Google Scholar 

  11. F. Thevenot R. Szymanski and P. Chaumette Clays Clay Mineral. 37, 396 (1989).

    Article  CAS  Google Scholar 

  12. S. Miyata Clays Clay Mineral. 31 (4), 305 (1983).

    Article  CAS  Google Scholar 

  13. S. Kikkawa and M. Koizumi Mater. Res. Bull. XVII 191 (1982).

    Article  Google Scholar 

  14. S. Idemura E. Suzuki and Y. Ono Clays Clay Mineral. 37 (6), 553 (1989).

    Article  CAS  Google Scholar 

  15. G.W. Brindley and S. Kikkawa Clays Clay Mineral. 28 (2), 87 (1980).

    Article  CAS  Google Scholar 

  16. T. Sato T. Wakabayashi and M. Shimada Ind. Eng. Chem. Prod. Res. Dev. 25, 89 (1986).

    Article  CAS  Google Scholar 

  17. S. Miyata Zeoraito 8 (4), 7 (1991) [in Japanese].

    CAS  Google Scholar 

  18. G. Brown and M. C. Gastuche Clay Mineral. 7, 193 (1973).

    Article  Google Scholar 

  19. H.F.W. Taylor Mineral Mag. 39 (304), 377 (1973).

    Article  CAS  Google Scholar 

  20. I. Sissoko E.T. Iyagba R. Sahai and P. Biloen J. Solid State Chem. 60, 283 (1985).

    Article  CAS  Google Scholar 

  21. C. Misra and A. J. Perrotta Clays Clay Mineral. 40, 1456 (1992).

    Article  Google Scholar 

  22. I. Pausch H. H. Lohse K. Schurmann and R. Allmann Clays Clay Mineral. 34, 507 (1986).

    Article  CAS  Google Scholar 

  23. M. Tsuji G. Mao and Y. Tamaura Clays Clay Mineral, (in press).

  24. R. M. Barrer and J. Klinowski J. Chem. Soc. Faraday Trans. I 70, 2080 (1974).

    Article  Google Scholar 

  25. G. L. Gaines Jr. and H. C. Thomas J. Chem. Phys. 21, 714 (1953).

    Article  CAS  Google Scholar 

  26. M. Tsuji and S. Komarneni Sep. Sci. Technol. 26, 647 (1991).

    Article  CAS  Google Scholar 

  27. M. Tsuji and S. Komarneni Sep. Sci. Technol. 27, 813 (1992).

    Article  CAS  Google Scholar 

  28. M. Tsuji M. Tabata and Y. Tamaura J. Am. Ceram. Soc. (in press).

  29. R. D. Shannon Acta Crystallogr. A32, 751 (1976).

    Article  CAS  Google Scholar 

  30. J.V. Evans and T. L. Whateley Trans. Faraday Soc. 63, 2769 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, M., Mao, G., Yoshida, T. et al. Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors. Journal of Materials Research 8, 1137–1142 (1993). https://doi.org/10.1557/JMR.1993.1137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1137

Navigation