Skip to main content
Log in

Determining fracture facet crystallography using electron backscatter patterns and quantitative tilt fractography

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A methodology is presented to characterize the crystallography of individual fracture surface facets. Electron backscatter patterns (EBSP’s) from a metallographic section through a facet identify grain orientation, and quantitative tilt fractography identifies facet orientation; these results are combined to establish fracture facet crystallography. For this technique, facet electropolishing is not required, the facet alignment procedure is accurate and quick, and the method can be generalized to different microstructures, test environments, or facet orientations. Method accuracy is illustrated for 25 to 50 μm fatigue crack facets in an unrecrystallized Al–Li–Cu alloy (AA2090) that has 5 μm thick subgrains in elongated grains that are 10 to 200 μm thick. The fine subgrain structure and tortuous fatigue crack profile precludes the use of other diffraction techniques for determining AA2090 facet crystallography. EBSP and tilt fractography results demonstrate that vacuum fatigue cracks in AA2090 are nearly parallel to local {111} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Barrett and T.B. Massalski, Structure of Metals (McGraw-Hill, New York, 1966), p. 416.

  2. D.A. Meyn, Trans. ASM 61, 52 (1968).

    Google Scholar 

  3. R. M. N. Pelloux, Trans. ASM 62, 281 (1969).

    CAS  Google Scholar 

  4. G. G. Garrett and J. F. Knott, Acta Metall. 23, 841 (1975).

    Article  CAS  Google Scholar 

  5. D.L. Davidson and D. Eylon, Metall. Trans. A 11A, 837 (1980).

    Article  CAS  Google Scholar 

  6. J. A. Wert and W. M. Robertson, Metallography 15, 367 (1982).

    Article  CAS  Google Scholar 

  7. E. I. Meletis, in Fracture, Measurement of Localized Deformation by Novel Techniques, edited by W. W. Gerberich and D. L. Davidson (TMS-AIME, Warrendale, PA, 1984), p. 87.

  8. D. N. Fager, M. V. Hyatt, and H. T. Diep, Scripta Metall. 20, 1159 (1986).

    Article  Google Scholar 

  9. S. P. Lynch, Acta Metall. 36, 2639 (1988).

    Article  CAS  Google Scholar 

  10. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley, Scripta Metall. 22, 1241 (1988).

    Article  CAS  Google Scholar 

  11. H. K. Birnbaum, in Hydrogen Effects on Material Behavior, edited by N. R. Moody and A. W. Thompson (The Minerals, Metals & Materials Society, 1990), p. 639.

  12. A.P. Reynolds and G.E. Stoner, Metall. Trans. A 22A, 1849 (1991).

    Article  CAS  Google Scholar 

  13. C. Q. Chen and H. X. Li, in Aluminum-Lithium 5, edited by T. H. Sanders and E. A. Starke, Jr. (Materials and Component Engineering Publications Ltd., Wardley Heath, U.K., 1989), p. 972.

  14. R. Tintillier, H. J. Gudladt, V. Gerold, and J. Petit, in Aluminum-Lithium 5, edited by T. H. Sanders and E. A. Starke, Jr. (Materials and Component Engineering Publications Ltd., Wardley Heath, U.K., 1989), p. 1135.

  15. Y. B. Xu, L. Wang, Y. Zhang, Z. G. Wang, and Q. Z. Hu, Metall. Trans. A 22A, 723 (1991).

    Article  CAS  Google Scholar 

  16. D.L. Davidson, Int. Metals Rev. 29, 75 (1984).

    CAS  Google Scholar 

  17. J. A. Kozubowski, M-J. Lii, and W. W. Gerberich, Scanning 9, 237 (1987).

    Article  Google Scholar 

  18. K. T. Venkateswara Rao and R. O. Ritchie, Int. Mater. Rev. 37, 153 (1992).

    Article  Google Scholar 

  19. R. S. Piascik and R. P. Gangloff, Metall. Trans. A (1993, in press).

  20. D. C. Slavik and R. P. Gangloff, Fatigue ‘93, edited by J. P. Bailon and J. I. Dickson (EMAS, West Midlands, U.K., 1993), Vol. II, pp. 757–765.

  21. D.J. Dingley, Scanning Electron Microscopy II, 569 (1984).

    Google Scholar 

  22. D. J. Dingley and K. Baba-Kishi, Scanning Electron Microscopy II, 383 (1986).

    Google Scholar 

  23. S. I. Wright and B. L. Adams, Metall. Trans. A 23A, 759 (1992).

    Article  CAS  Google Scholar 

  24. V. Randle, B. Ralph, and D. Dingley, Acta Metall. 36, 267 (1988).

    Article  CAS  Google Scholar 

  25. F. Barlat, J. C. Brem, and J. Liu, Scripta Metall. 27, 1121 (1992).

    Article  CAS  Google Scholar 

  26. ASTM Standard E647-88A, in the 1989 Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1989), Vol. 03.01, p. 646.

  27. D.C. Slavik, C.P. Blankenship, Jr., E.A. Starke, Jr., and R.P. Gangloff, unpublished results.

  28. R.S. Piascik and R.P. Gangloff, Metall. Trans. A 22A, 2415 (1991).

    Article  CAS  Google Scholar 

  29. K.V. Jata and E.A. Starke, Jr., Metall. Trans. A 17A, 1011 (1986).

    Article  CAS  Google Scholar 

  30. J. F. Knott, Fundamentals of Fracture Mechanics (John Wiley and Sons, New York, 1979), p. 89.

  31. A.J. Wilkinson and D.J. Dingley, Acta Metall. 39, 3047 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slavik, D.C., Wert, J.A. & Gangloff, R.P. Determining fracture facet crystallography using electron backscatter patterns and quantitative tilt fractography. Journal of Materials Research 8, 2482–2491 (1993). https://doi.org/10.1557/JMR.1993.2482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2482

Navigation