Skip to main content
Log in

Kinetics of the reactive spreading of molten aluminum on ceramic surfaces

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The spreading kinetics of molten aluminum on ceramic surfaces bearing reactive coatings has been studied through the direct observation of sessile drops, either formed in situ or emplaced at temperature. Analysis of videotapes permitted the assessment of the rate of advance of rapidly spreading droplets. Experimental conditions in this study were chosen to avoid the severe retarding effect of the aluminum oxide film which is typically encountered in aluminum wetting experiments. A variety of reactive coating systems were examined (B, Cu, Ni, Ti, and Ti + B), and the effect of coating amount was assessed. Based upon the experiments of this study, the main effect of the coatings is to drive spreading due to strong exothermic interfacial reactions. The intensity of the interfacial reaction causes the change in free energy per unit area of interface to dominate the rate of movement of the triple line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.M. Balaba, D.A. Weirauch, Jr., A.J. Perrotta, G.H. Armstrong, P.N. Anyablebechi, S. Kauffman, A.N. Maclnnes, A.M. Winner, and A.R. Barron, J. Mater. Res. 8, 3192 (1993).

    Article  CAS  Google Scholar 

  2. J.J. Brennan and J. A. Pask, J. Am. Ceram. Soc. 51, 569 (1968).

    Article  CAS  Google Scholar 

  3. J.A. Champion, B.J. Keene, and J.M. Stillwood, J. Mater. Sci. 4, 39 (1969).

    Article  CAS  Google Scholar 

  4. N. Eustathopoulos, J. C. Joud, P. Desre, and M. Hicter, J. Mater. Sci. 9, 1223 (1974).

    Article  Google Scholar 

  5. L. Coudurier, J. Adorian, D. Pique, and N. Eustathopoulos, Rev. Int. Hautes Temper. Refract., Fr. 21, 81 (1984).

    CAS  Google Scholar 

  6. H. John and H. Hausner, J. Mater. Sci. Lett. 5, 549 (1986).

    Article  CAS  Google Scholar 

  7. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos, Acta Metall. 36, 1797 (1988).

    Article  CAS  Google Scholar 

  8. D. A. Weirauch, Jr., in Ceramic Microstructures ‘86, edited by J. A. Pask and A.G. Evans (Plenum Press, New York 1988), p. 329.

    Google Scholar 

  9. P.D. Ownby, K.W. Li, and D.A. Weirauch, Jr., J. Am. Ceram. Soc. 74, 1275 (1991).

    Article  CAS  Google Scholar 

  10. G. Kaptay, Mater. Sci. Forum 77, 315 (1991).

    Article  CAS  Google Scholar 

  11. S.W. Ip, M. Kucharski, and J.M. Toguri, J. Mater. Sci. Lett. 12, 1699 (1993).

    Article  CAS  Google Scholar 

  12. E. Ignatowitz, Aluminum 50, 334 (1974).

    CAS  Google Scholar 

  13. E. Fitzer, E. Ignatowitz, and M. Sahebkar, Report on the Int. Carbon Conf. “Carbon ‘72”, Baden-Baden, Germany (1975).

    Google Scholar 

  14. W.L. Lachman, R.A. Penty, and A.F. Jahn, US Patent No. 3,860,443 (1975).

  15. M.F. Amateau, J. Composite Mater. 10, 279 (1976).

    Article  CAS  Google Scholar 

  16. R.V. Sara, Report No. AFML-TR-66-310 (Air Force Materials Laboratory, Wright-Patterson AFB, OH, 1966), Pt. 1, p. 193.

  17. J.J. Gebhardt, Report No. CTR 73-36 (AMMRC, Watertown, MA, 1973).

  18. R. Gremion, M. Moreau, G. Joquet, and P. Mottet, Bull. Inform. Sci. Tech. Commis. Energ. At. (Fr.) 155, 53 (1971).

    Google Scholar 

  19. S.M. Savvatejeva, and P. Sebo, Proc. of the 3rd Int. Symp. Compos. Met. Mater. Moscow, USSR, Paper No. 21 (1978), p. 21–1.

  20. R.T. Pepper and E.G. Kendall, US Patent No. 3,770,488 (1973).

  21. A. A. Baker, C. Shipman, and P. W. Jackson, Fiber Sci. Technol. 5, 213 (1972).

    Article  CAS  Google Scholar 

  22. E. De Lamotte, K. Phillips, A.J. Perry, and H.R. Killias, J. Mater. Sci. 7, 346 (1972).

    Article  Google Scholar 

  23. L. Aggour, E. Fitzer, M. Heyman, and E. Ignatowitz, Thin Solid Films 40, 97 (1977).

    Article  CAS  Google Scholar 

  24. J.W. Upp, R.T. Pepper, E.G. Kendall, and R.C. Rossi, Report No. TR-0059(9250-10)-9 (The Aerospace Corporation, El Segundo, CA, 1970).

  25. S. Kohara and N. Muto, in Proc. of the 5th Int. Conf. on Composite Materials ICCM5, edited by W. C. Harrigan, J. Strife, and A. K. Dhingra (TMS-AIME, Warrensdale, PA, 1985).

    Google Scholar 

  26. R. J. Imprescia, L. S. Levinson, R. D. Reiswig, T. C. Wallace, and J.M. Williams, Progress Report No. LA-5741-RR (Los Alamos Scientific Laboratory, Los Alamos, NM 1974).

  27. O. A. Kashin, V. E. Charenko, S. E. Salibekov, and A. A. Zabolotskii, Metall. Sci. Heat Treatment 22, 809 (1980).

    Article  Google Scholar 

  28. T.G. Nieh and A.E. Vidoz, J. Am. Ceram. Soc. 65, 227 (1982).

    Article  CAS  Google Scholar 

  29. R. N. Singh and M. K. Brun, Ceram. Eng. Sci. Proc. 8, 636 (1987).

    Article  CAS  Google Scholar 

  30. J. M. Brupbacher, L. Christodoulou, and D. C. Nagle, US Patent 4,710,348 (1987).

  31. S. Schamm, R. Fedou, J. P. Rocher, J. M. Quenisset, and R. Naslain, Metall. Trans. A 22A, 2133 (1991).

    Article  CAS  Google Scholar 

  32. N. Eustathopoulos and L. Coudurier, Ann. Chim. Fr. (Paris) 10, 1 (1985).

    CAS  Google Scholar 

  33. Z. Zhu, Proc. Int. Symp. on Advances in Cast Reinforced Metal Composites, edited by S. G. Fishman and A. K. Dhingra (ASM INTERNATIONAL, Metals Park, OH, 1988), p. 93.

    Google Scholar 

  34. D. A. Weirauch, Jr. and W. J. Kraflck, Metall. Trans. A 21A, 1745 (1990).

    Article  CAS  Google Scholar 

  35. Yu V. Naidich, Yu. N. Chubashov, N.F. Ishchuk, and V.P. Krasovskii, Proshkovaya Metallurgiya 6, 67 (1983).

    Google Scholar 

  36. Yu V. Naidich and V. Ju, in Progress in Surface and Membrane Science (Academic Press, New York, 1981), Vol. 14, p. 353.

    Google Scholar 

  37. S. K. Rhee, J. Am. Ceram. Soc. 53, 386 (1970).

    Article  CAS  Google Scholar 

  38. H. W. Tsai, W. L. Wang, and G. D. Zhang, in 8th Int. Conf. on Comp. Mat, ICCM 8, edited by S.W. Tsai and G. S. Springer (SAMPE, Covina, CA, 1991), p. 19C1.

    Google Scholar 

  39. L. Espié, B. Drevet, and N. Eustathopoulos, Metall. Mat. Trans. A 25A, 599 (1994).

    Article  Google Scholar 

  40. N. Eustathopoulos and A. Mortensen, in Fundamentals of Metal Matrix Composites, edited by S. Suresh, A. Mortensen, and A. Needleman (Butterworth-Heinemann, Stoneham, MA, 1993), p. 42.

    Chapter  Google Scholar 

  41. J.C. Rawers and W.R. Wrzesinski, J. Mater. Sci. 27, 2877 (1992).

    Article  CAS  Google Scholar 

  42. I. Maxwell and A. Hellawell, Metall. Trans. 3, 1487 (1972).

    Article  CAS  Google Scholar 

  43. I. Barin, F. Sauert, E. Schultze-Rhonhof, and W. S. Sheng, Thermochemical Data of Pure Substances (VCH Publishers, New York, 1989).

    Google Scholar 

  44. I. A. Aksay, C.E. Hoge, and J. A. Pask, J. Phys. Chem. 78, 1178 (1974).

    Article  CAS  Google Scholar 

  45. P. Nikolopoulos, J. Mater. Sci. 20, 3993 (1985).

    Article  CAS  Google Scholar 

  46. C. Garcia-Cordovilla, E. Louis, and A. Pamies, J. Mater. Sci. 21, 2787 (1986).

    Article  CAS  Google Scholar 

  47. S.D. Dunmead, D.W. Readey, and C.E. Semler, J. Am. Ceram. Soc. 73, 2318 (1989).

    Article  Google Scholar 

  48. R.W. Rice, G. Y. Richardson, J.M. Kumetz, T. Schroeter, and W.J. McDonough, Adv. Ceram. Mat. 2, 222 (1987).

    Article  CAS  Google Scholar 

  49. G.L.J. Bailey and H.C. Watkins, J. Inst. Metals 80, 57 (1951–52).

    CAS  Google Scholar 

  50. J. C. Ambrose and M. G. Nicholas, in Proc. of the 1st European Conf., Euromat ‘89, Aachen, Germany (1989), Vol. 2, p. 1073.

  51. A-P. Xian, X-M. Xue, and Z-Y. Si, J. Mater. Sci. Lett. 10, 246 (1991).

    Article  CAS  Google Scholar 

  52. J. C. Ambrose, M. G. Nicholas, and A. M. Stoneham, Acta Metall. Mater. 40, 2483 (1992).

    Article  CAS  Google Scholar 

  53. A. P. Tomsia, J. A. Pask, and R. E. Loehman, Ceram. Eng. Sci. Proc. 10, 1631 (1989).

    Article  CAS  Google Scholar 

  54. P. Kritsalis, L. Coudurier, and N. Eustathopoulos, J. Mater. Sci. 26, 3400 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weirauch, D.A., Balaba, W.M. & Perrotta, A.J. Kinetics of the reactive spreading of molten aluminum on ceramic surfaces. Journal of Materials Research 10, 640–650 (1995). https://doi.org/10.1557/JMR.1995.0640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0640

Navigation