Skip to main content
Log in

Impedance spectroscopy of grain boundaries in nanophase ZnO

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sintered compacts of nanophase ZnO (∼60 nm average grain size, presintered at 600 °C) were made from powders (∼13 nm) prepared by the gas-condensation technique. Impedance spectra were taken as a function of temperature over the range 450–600 °C and as a function of oxygen partial pressure over the range 10−3−1 atm (550 and 600 °C only). The activation energy was determined to be 55 kJ/mole (0.57 eV) and was independent of oxygen partial pressure. The oxygen partial pressure exponent was −1/6. Impedance spectra exhibited nonlinear I-V behavior, with a threshold of approximately 6 V. These results indicate that grain boundaries are governing the electrical properties of the compact. Ramifications for oxygen sensing and for grain boundary defect characterization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Microstructures, edited by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Risø National Laboratory, Roskilde, 1981). p. 15.

    Google Scholar 

  2. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, Phys. Lett. 102A, 365 (1984).

    Article  CAS  Google Scholar 

  3. R. Birringer, U. Herr, and H. Gleiter, Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).

    Google Scholar 

  4. R. W. Siegel, S. Ramasamy, H. Hahn, Li Zongquan, Lu Ting, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).

    Article  CAS  Google Scholar 

  5. R. W. Siegel and J. A. Eastman, in Multicomponent Ultrafine Microstructures, edited by L. E. McCandlish, D. E. Polk, R. W. Siegel, and B. H. Kear (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 3.

  6. M. J. Mayo, R. W. Siegel, Y. X. Liao, and W. D. Nix, J. Mater. Res. 7, 973 (1992).

    Article  CAS  Google Scholar 

  7. H. Hahn, J. Logas, and R. S. Averback, J. Mater. Res. 5, 609 (1990).

    Article  CAS  Google Scholar 

  8. K. Kimoto, Y. Kamiya, M. Nonoyama, and R. Uyeda, Jpn. J. Appl. Phys. 2, 702 (1963).

    Article  CAS  Google Scholar 

  9. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).

    Article  CAS  Google Scholar 

  10. A. R. Thölen, Acta Metall. 27, 1765 (1979).

    Article  Google Scholar 

  11. R. W. Siegel, Mater. Sci. Eng. A 168, 189 (1993).

    Article  Google Scholar 

  12. H. Hahn, J. C. Logas, H. J. Höfler, and R. S. Averback, in Clusters and Cluster-Assembled Materials, edited by R. S. Averback, D. L. Nelson, and J. Bernholc (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 569.

  13. Y. K. Huang, A. A. Menovsky, and F. R. de Boer, Nanostructured Materials 2, 505 (1993).

    Article  CAS  Google Scholar 

  14. T. Takeuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masquelier, and O. Nakamura, J. Am. Ceram. Soc. 77, 1665 (1994).

    Article  CAS  Google Scholar 

  15. T. K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

    Article  CAS  Google Scholar 

  16. F. A. Kröger, Chemistry of Imperfect Crystals, 2nd ed. (North-Holland, Amsterdam, 1974).

  17. K. I. Hagemark, J. Solid State Chem. 16, 293 (1976).

    Article  CAS  Google Scholar 

  18. G. D. Mahan, J. Appl. Phys. 54, 3825 (1976).

    Article  Google Scholar 

  19. R. Eizinger, in Grain Boundaries in Semiconductors, edited by H. J. Leamy, G. E. Pike, and C. H. Seager (Elsevier, New York, 1982), p. 342.

  20. J. R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987).

    Google Scholar 

  21. E. Ziegler, A. Heinrich, H. Opperman, and G. Stover, Phys. Status Solidi A 66, 635 (1981).

    Article  CAS  Google Scholar 

  22. G. Heiland, E. Mollwo, and F. Stockman, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1959), p. 191.

  23. G. E. Pikes, S. R. Kurtz, and P. L. Dourly, J. Appl. Phys. 57, 5512 (1985).

    Article  Google Scholar 

  24. G. Blatter and F. Greuter, Phys. Rev. B 33, 3952 (1986).

    Article  CAS  Google Scholar 

  25. M. Seitz, F. Hampton, and W. Richmond, in Advances in Ceramics, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Westerville, OH, 1983), p. 60.

  26. H. H. V. Baumbach and C. Wagner, Z. Phys. Chem. B 22, 199 (1933).

    Google Scholar 

  27. M. H. Sukkar and H. L. Tuller, in Advances in Ceramics, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Westerville, OH, 1983), p. 71.

  28. C. Gleiter, J. Nowotny, and M. Rekas, Appl. Phys. A 53, 310 (1991).

    Article  Google Scholar 

  29. V. S. Stubican, Philos. Mag. A 68, 809 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Hwang, JH., Mashek, J.J. et al. Impedance spectroscopy of grain boundaries in nanophase ZnO. Journal of Materials Research 10, 2295–2300 (1995). https://doi.org/10.1557/JMR.1995.2295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2295

Navigation