Skip to main content
Log in

An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomistic techniques are used to study brittle fracture under opening mode and mixed mode loading conditions. The influence of the discreteness of the lattice and of the lattice-trapping effect on crack propagation is studied using an embedded atom potential for nickel to describe the crack tip. The recently developed FEAt (Finite Element-Atomistic) coupling scheme provides the atomistic core region with realistic boundary conditions. Several crystallographically distinct crack-tip configurations are studied and commonly reveal that brittle cracks under general mixed mode loading situations follow an energy criterion (G-criterion) rather than an opening-stress criterion (K l-criterion). However, if there are two competing failure modes, they seem to unload each other, which leads to an increase in lattice trapping. Blunted crack tips are studied in the last part of the paper and are compared to the atomically sharp cracks. Depending on the shape of the blunted crack tip, the observed failure modes differ significantly and can drastically disagree with what one would anticipate from a continuum mechanical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Thomson, C. Hsieh, and V. Rana, J. Appl. Phys. 42, 3154 (1971).

    Article  CAS  Google Scholar 

  2. J. E. Sinclair, Philos. Mag. 31, 647 (1975).

    Article  CAS  Google Scholar 

  3. J. E. Sinclair and B. R. Lawn, Proc. R. Soc. London A 329, 83 (1972).

    Article  CAS  Google Scholar 

  4. M. Mullins and M. A. Dokainish, Philos. Mag. A 46, 71 (1982).

    Article  Google Scholar 

  5. S. Kohlhoff, P. Gumbsch, and H. F. Fischmeister, Philos. Mag. A 64, 851 (1991).

    Article  Google Scholar 

  6. R. Thomson, S. J. Zhou, A. E. Carlsson, and V. K, Tewary, Phys. Rev. B 46, 10613 (1992).

    Article  CAS  Google Scholar 

  7. K. S. Cheung and S. Yip, Phys. Rev. Lett. 65, 2804 (1990).

    Article  CAS  Google Scholar 

  8. K. S. Cheung, A. S. Argon, and S. Yip, J. Appl. Phys. 69, 2088 (1991).

    Article  CAS  Google Scholar 

  9. R. G. Hoagland, M. S. Daw, and J. P. Hirth, J. Mater. Res. 6, 2565 (1991).

    Article  CAS  Google Scholar 

  10. S. J. Zhou, A. E. Carlsson, and R. Thomson, Phys. Rev. B 47, 7710 (1993).

    Article  CAS  Google Scholar 

  11. S. J. Zhou, A. E. Carlsson, and R. Thomson, Phys. Rev. Lett. 72, 852 (1994).

    Article  CAS  Google Scholar 

  12. F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge, Phys. Rev. Lett. 73, 272 (1994).

    Article  CAS  Google Scholar 

  13. G. C. Sih and H. Liebowitz, in Fracture, edited by H. Liebowitz (Academic Press, New York, 1968), Vol. 2, Chap. 2, pp. 67–190.

    Google Scholar 

  14. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  15. R. Thomson, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York 1986), Vol. 39, pp. 1–129.

    Google Scholar 

  16. J. E. Sinclair and M. W. Finnis, in Atomistics of Fracture, edited by R. M. Latanision and J. R. Pickens (Plenum Press, New York, 1983), pp. 1047–1053.

    Chapter  Google Scholar 

  17. P. M. Anderson and R. Thomson, J. Appl. Phys. 76, 843 (1994).

    Article  Google Scholar 

  18. J. R. Rice, J. Mech. Phys. Solids 40, 239 (1992).

    Article  CAS  Google Scholar 

  19. G. Schoeck, Philos. Mag. A 63, 111 (1991).

    Article  Google Scholar 

  20. J. R. Rice and G. E. Beltz, J. Mech. Phys. Solids 42, 333 (1994).

    Article  CAS  Google Scholar 

  21. P. Gumbsch and G. E. Beltz, unpublished.

  22. E. Kröner, Int. J. Solids Structures 3, 731 (1967).

    Article  Google Scholar 

  23. M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Article  CAS  Google Scholar 

  24. A. T. Paxton, P. Gumbsch, and M. Methfessel, Philos. Mag. Lett. 63, 267 (1991).

    Article  CAS  Google Scholar 

  25. M. I. Baskes and M. S. Daw, in Proceedings of the 4th International Conference on the Effect of Hydrogen on the Behavior of Materials (The Minerals, Metals and Materials Society, Warrendale, PA, 1990).

    Google Scholar 

  26. M. Mullins, Int. J. Fracture 24, 189 (1984).

    Article  Google Scholar 

  27. J. R. Rice, in Fracture, edited by H. Liebowitz (Academic Press, New York, 1968), Vol. 2, Chap. 3, pp. 191–311.

    Google Scholar 

  28. Y. Sun and G. E. Beltz, J. Mech. Phys. Solids 42, 1905 (1994).

    Article  CAS  Google Scholar 

  29. J. E. R. Fuller and R. Thomson, Fracture 1977 3, 387 (1977).

    Google Scholar 

  30. B. Lawn, Fracture of Brittle Solids, end ed. (University Press, Cambridge, UK, 1993).

    Book  Google Scholar 

  31. A. Paskin, B. Massoumzadeh, K. Shukla, K. Sieradzki, and G. J. Dienes, Acta Metall. 33, 1987 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumbsch, P. An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling. Journal of Materials Research 10, 2897–2907 (1995). https://doi.org/10.1557/JMR.1995.2897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2897

Navigation