Skip to main content
Log in

Electrically controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanophase particles with precisely controlled characteristics are made by oxidation of their halide vapors in electrically assisted hydrocarbon flames using needle-shaped or plate electrodes. The particle size and crystallinity decrease with increasing field strength across the flame. The field generated by the electrodes across the flame decreases the particle residence time in the high temperature region of the flame. Furthermore, it charges the newly formed particles, resulting in electrostatic repulsion and dispersion that decreases particle growth by coagulation. Electric fields reduced the primary particle size of TiO2, the agglomerate size of SnO2, and both the agglomerate and primary size of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard III, A. Kaldor, S. G. Louie, M. Moscovits, P. S. Peercy, S. J. Riely, R. W. Siegel, F. Spaepen, and Y. Wang, J. Mater. Res. 4, 704 (1989).

    Article  CAS  Google Scholar 

  2. N. Ichinose, Y. Ozaki, and S. Kashu, Superfine Particle Technology (Springer-Verlag, London, 1992).

  3. G. D. Ulrich, C&EN, 62(8), 22 (1984).

    Article  CAS  Google Scholar 

  4. D. R. Hardesty and F. J. Weinberg, Fourteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1973) p. 1365.

    Google Scholar 

  5. J. K. Katz and C-H. Hung, Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1990) p. 1733.

    Google Scholar 

  6. Y. Xiong, S. E. Pratsinis, and S. V. R. Mastrangelo, J. Colloid Interface Sci. 153, 106 (1992).

    Article  CAS  Google Scholar 

  7. S. Vemury and S. E. Pratsinis, Appl. Phys. Lett. 66, 3275 (1995).

    Article  CAS  Google Scholar 

  8. S. E. Pratsnis, W. Zhu, and S. Vemury, Powder Technol. 86, 87 (1996).

    Article  Google Scholar 

  9. E. J. Mezey, in Vapor Deposition, edited by C. F. Powell, J. H. Oxley, and J. M. Blocher, Jr. (John Wiley & Sons, New York, 1966), 423.

    Google Scholar 

  10. D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 25, 1523 (1991).

    Article  Google Scholar 

  11. M. R. Bankmann, R. Brand, B. H. Engler, and J. Ohmer, Catal. Today 14, 225 (1992).

    Article  CAS  Google Scholar 

  12. J. R. Bautista and R. M. Atkins, J. Aerosol Sci. 22, 667 (1991).

    Article  CAS  Google Scholar 

  13. E. U-K. Kim and I. Yasui, J. Mater. Sci. 23, 637 (1988).

    Article  CAS  Google Scholar 

  14. R. Vijayakumar and K. T. Whitby, Aerosol Sci. Technol. 3, 17 (1984).

    Article  CAS  Google Scholar 

  15. S. Vemury and S. E. Pratsinis, J. Am. Ceram. Soc. 78, 2984–2992 (1995).

    Article  CAS  Google Scholar 

  16. A. Kobata, K. Kusakabe, and S. Morooka, AlChE J. 37, 347–359 (1991).

    Article  CAS  Google Scholar 

  17. S. Vemury, Flame Synthesis of Nanoparticles: Effect of Charging, Ph.D. Thesis, University of Cincinnati (1996).

  18. T. Matsoukas and S. K. Friedlander, J. Colloid Interface Sci. 146, 495 (1991).

    Article  CAS  Google Scholar 

  19. P. G. Harrison and M. J. Willett, J. Chem. Soc., Faraday Trans. 1, 85 1921–1932 (1989).

  20. M. Astier and P. Vergnon, J. Solid State Chem. 19, 67 (1976).

    Article  CAS  Google Scholar 

  21. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Wiley-Interscience, New York, 1976).

  22. R. D. Shannon and J. A. Pask, J. Am. Ceram. Soc. 48, 391 (1965).

    Article  CAS  Google Scholar 

  23. K. G. Payne and F. J. Weinberg, Proc. R. Soc A250, 316 (1959).

    CAS  Google Scholar 

  24. D. Bradley and M. A. M. Jamel, Comb. Flame 58, 115 (1984).

    Article  CAS  Google Scholar 

  25. D. Bradley, in Advanced Combustion Processes, edited by F. J. Weinberg (Academic Press, Orlando, FL, 1986), 331.

    Google Scholar 

  26. E. Sher, G. Pinhasi, A. Pokryvailo, and R. Baron, Combustion Flame 94, 244 (1993).

    Article  CAS  Google Scholar 

  27. G. P. Fotou, S. E. Pratsinis, and P. A. Baron, Chem. Eng. Sci. 49, 1651 (1994).

    Article  CAS  Google Scholar 

  28. G. Kasper, J. Colloid Interface Sci. 81, 32 (1981).

    Article  Google Scholar 

  29. M. Adachi, Y. Kousaka, and K. Okuyama, J. Aerosol Sci. 16, 109 (1985).

    Article  CAS  Google Scholar 

  30. A. Wiedensohler, J. Aerosol Sci. 19, 387 (1988).

    Article  CAS  Google Scholar 

  31. M. K. Akhtar, Y. Xiong, and S. E. Pratsinis, AlChE J. 37, 1561–1570 (1991).

    Article  CAS  Google Scholar 

  32. S. Vemury and S. E. Pratsinis, J. Aerosol Sci. 27, 951 (1996).

    Article  CAS  Google Scholar 

  33. W. Koch and S. K. Friedlander, J. Colloid Interface Sci. 140, 419 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vemury, S., Pratsinis, S.E. & Kibbey, L. Electrically controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders. Journal of Materials Research 12, 1031–1042 (1997). https://doi.org/10.1557/JMR.1997.0144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0144

Navigation