Skip to main content
Log in

Enhanced diffuse phase transition and defect mechanism of Na-doped Pb(Mg1/3Nb2/3)O3 relaxor ferroelectrics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The diffuse phase transition (DPT) characteristics and the associated defect mechanism of Na-doped Pb(Mg1/3Nb2/3)O3 (PMN) relaxor perovskite were studied. The enhanced DPT and the decrease in the intensity of the superlattice reflection were observed in the presence of Na2O. These contradictory observations were interpreted in terms of the inhibition of the growth of the 1 : 1 nonstoichiometric short-range ordered domains and the increase in the microcompositional fluctuation of the B-site cations caused by the formation of negatively charged Na′Mg sites. The mechanism of the associated defect process was then elucidated by analyzing the electrical conductivity as a function of the oxygen partial pressure. It was shown that the substitution of Na+ ions for Mg2+ ions in the B-site sublattice of perovskite PMN produced the negatively charged \({\text{N}}{{\text{a'}}_{{\text{Mg}}}}\) sites with a concomitant generation of oxygen vacancies \(({V_{\text{O}}}^{\prime \prime })\) for the ionic compensation. This expedites the enhancement of the compositional inhomogeneities of the B-site cations and suppresses the growth of the nonstoichiometrically ordered nanodomains in a disordered matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, J. Phys. Soc. Jpn. 28 (suppl.), 26 (1970).

    Google Scholar 

  2. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Article  CAS  Google Scholar 

  3. T. R. Shrout and A. Halliyal, Am. Ceram. Soc. Bull. 66, 704 (1987).

    CAS  Google Scholar 

  4. S. Nomura and K. Uchino, Ferroelectrics 50, 197 (1983).

    Article  Google Scholar 

  5. K. Uchino, Am. Ceram. Soc. Bull. 65, 647 (1986).

    CAS  Google Scholar 

  6. C. E. Wheeler and B.G. Pazol, Am. Ceram. Soc. Bull. 70, 117 (1991).

    CAS  Google Scholar 

  7. K. Uchino, S. Nomura, L.E. Cross, R.E. Newnham, and S.J. Jang, J. Mater. Sci. 16, 569 (1981).

    Article  CAS  Google Scholar 

  8. K. Uchino, Y. Tsuchiya, S. Nomura, T. Sato, H. Ishikawa, and O. Ikeda, Appl. Opt. 20, 3077 (1981).

    Article  CAS  Google Scholar 

  9. K. Uchino, J. Kuwata, S. Nomura, L.E. Cross, and R.E. Newnham, Jpn. J. Appl. Phys. 20, (supp. 20-4), 171 (1981).

  10. N. Y. Kudo and T. Ono, Jpn. J. Appl. Phys. 31, 3081 (1992).

    Article  Google Scholar 

  11. S. Nomura and K. Uchino, Ferroelectrics 41, 117 (1982).

    Article  CAS  Google Scholar 

  12. M.P. Harmer, J. Chen, P. Peng, H. M. Chan, and D.M. Smyth, Ferroelectrics 97, 263 (1989).

    Article  CAS  Google Scholar 

  13. N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).

    Article  CAS  Google Scholar 

  14. P. Groves, J. Phys. C: Solid State Phys. 19, 118 (1986).

    Google Scholar 

  15. J. Chen, H.M. Chan, and M. P. Harmer, J. Am. Ceram. Soc. 72, 593 (1989).

    Article  CAS  Google Scholar 

  16. Z. Wu, Z. Gui, L. Li, and X. Zhang, J. Appl. Phys. 72, 5822 (1992).

    Article  CAS  Google Scholar 

  17. D. Viehland and J-F. Li, J. Appl. Phys. 74, 4121 (1993).

    Article  CAS  Google Scholar 

  18. S. L. Swartz and T. R. Shrout, Mater Res. Bull. 17, 1245 (1982).

    Article  CAS  Google Scholar 

  19. H. M. Jang, K-M. Lee, and M-H. Lee, J. Mater. Res. 9, 2634 (1994).

    Article  CAS  Google Scholar 

  20. F. Izumi, J. Cryst. Soc. Jpn. 27, 23 (1985).

    Article  CAS  Google Scholar 

  21. G. M. Smolenskii, Proc. 2nd Int. Meet. Ferroelectr. (IMF–2), 1969 (1970), p. 26.

  22. B. N. Rolov, Sov. Phys.-Solid State (Engl. Transl.) 6, 1676 (1965).

    Google Scholar 

  23. S. M. Pilgrim, A. E. Sutherland, and S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990).

    Article  CAS  Google Scholar 

  24. H-C. Wang and W. A. Schultz, J. Am. Ceram. Soc. 73, 825 (1990).

    Article  CAS  Google Scholar 

  25. A. D. Hilton, D. J. Barber, C. A. Randall, and T. R. Shrout, J. Mater. Sci. 25, 3461 (1990).

    Article  CAS  Google Scholar 

  26. J. R. Macdonald, Impedance Spectroscopy (John Wiley & Sons, New York, 1987), Chap. 4.

  27. J. Dudek, and Z. Wróbel, Ferroelectrics 18, 161 (1978).

    Article  CAS  Google Scholar 

  28. F. Izumi, M. Mitomo, and Y. Bando, J. Mater. Sci. 19, 3115 (1984).

    Article  CAS  Google Scholar 

  29. R. A. Young and D.B. Wiles, J. Appl. Crystallogr. 15, 430 (1982).

    Article  CAS  Google Scholar 

  30. A. J. Moulson and J. M. Herbert, Electroceramics (Chapman and Hall), Chap. 2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KM., Jang, H.M. Enhanced diffuse phase transition and defect mechanism of Na-doped Pb(Mg1/3Nb2/3)O3 relaxor ferroelectrics. Journal of Materials Research 12, 1614–1624 (1997). https://doi.org/10.1557/JMR.1997.0221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0221

Navigation