Skip to main content
Log in

Effects of Borosilicate Glass on Densification and Properties of Borosilicate Glass + TiO2 Ceramics

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Effects of borosilicate glass (BSG) on densification and dielectric and thermal expansion properties of a binary composite of BSG + TiO2 ceramics have been investigated. Two different phases of TiO2 including anatase and rutile are used. A much greater densification is observed with anatase because it has a much better wetting with BSG than rutile. With increasing BSG content, the densification of BSG + TiO2 increased. Activation analysis shows that the densification is controlled by viscous flow of BSG. Both dielectric constant and coefficient of thermal expansion of the binary composite of BSG + TiO2 increase with decreasing BSG content and increasing the degree of anatase-to-rutile transformation, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ruh, K. S. Mazdiyashi, P. G. Valentine, and H. O. Bielstein, J. Am. Ceram. Soc. 67, C-190 (1984).

  2. Structure and Properties of Ceramics, edited by M. V. Swain (VCH Publishers Inc., Weinheim, 1994), Vol. 11, p. 103.

  3. See, for example, Series of conference proceedings on the Science and Technology of Zirconia (American Ceramic Society, Vols. I–IV, 1981, 1984, 1988, 1992).

  4. E.C. Subbarao, in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia I, edited by A. H. Heuer and L.W. Hobbs (American Ceramic Society, Westerville, OH, 1981), pp. 1–24.

    Google Scholar 

  5. C. C. Koch, NanoStructured Mater. 2, 109 (1993); J. Z. Jiang, C. Gente, and R. Bormann, Mater. Sci. Eng. A 242, 268 (1998); J.Z. Jiang, R. Lin, S. Mørup, K. Nielsen, F. W. Poulsen, F. J. Berry, and R. Clausen, Phys. Rev. B 55, 11 (1997).

    Google Scholar 

  6. D. Michel, F. Faudot, E. Gaffet, and L. Mazerolles, J. Am. Ceram. Soc. 76, 2884 (1993); D. Michel, L. Mazerolles, P. Berthet, and E. Gaffet, Eur. J. Solid State Inorg. Chem. 32, 673 (1995).

    Google Scholar 

  7. Y.L. Chen, M. Qi, J.S. Wu, D. H. Wang, and D. Z. Yang, Appl. Phys. Lett. 65, 303 (1994); Y.L. Chen, M. Qi, D.Z. Yang, and J. S. Wu, Mater. Sci. Eng. A 183, L9 (1994); Y. L. Chen, M. Zhu, M. Qi, D.Z. Yang, and H. J. Fecht, Mater. Sci. Forum 179–181, 133 (1995).

    Article  Google Scholar 

  8. A.M. Tonejc and A. Tonejc, Mater. Sci. Forum 225–227, 497 (1996).

    Article  Google Scholar 

  9. M. M. Boutz, A. J.A. Winnubst, F. Hartgers, and A.J. Burggraaf, J. Mater. Sci. 29, 5374 (1994).

    Article  CAS  Google Scholar 

  10. M. J. Verkerk, A. J. A. Winnubst, and A. J. Burggraaf, J. Mater. Sci. 17, 3113 (1982).

    Article  CAS  Google Scholar 

  11. A. Hoffmann and W.A. Fischer, Z. Phys. Chem. NF 17, 30 (1958).

    Article  CAS  Google Scholar 

  12. S. Davison, R. Kershaw, K. Dwight, and A. Wold, J. Solid State Chem. 73, 47 (1988).

    Article  CAS  Google Scholar 

  13. F. J. Berry, M. H. Loretto, and M. R. Smith, J. Solid State Chem. 83, 91 (1989); F. J. Berry, S. Jobsen, and M. R. Smith, Hyperfine Interactions 46, 607 (1989).

    Article  Google Scholar 

  14. P. Li, I-W. Chen, and J. E. Penner-Hahn, J. Am. Ceram. Soc. 77, 118 (1994).

    Article  CAS  Google Scholar 

  15. R. H. G. Kiminami, J. Mater. Sci. Lett. 9, 373 (1990).

    Article  CAS  Google Scholar 

  16. J. Z. Jiang, Y. X. Zhou, S. Mørup, and C. B. Koch, Nanostructured Mater. 7, 401 (1996); S. Mørup and H. Topsøe, Appl. Phys. 11, 63 (1976).

    Google Scholar 

  17. J. Z. Jiang, R. Lin, K. Nielsen, S. Mørup, D. G. Rickerby, and R. Clausen, Phys. Rev. B 55, 14 830 (1997).

  18. The Rietveld Method, edited by R. A. Young (International Union of Crystallography, Oxford University Press, 1993).

  19. J. E. Bailey, D. Lewis, Z.M. Librant, and L.J. Porter, Trans. J. Brit. Ceram. Soc. 71, 25 (1972).

    CAS  Google Scholar 

  20. D. Schroeer and R. C. Nininger, Jr., Phys. Rev. Lett. 19, 632 (1967).

    Article  CAS  Google Scholar 

  21. J. Z. Jiang and S. Mørup, unpublished.

  22. R.V. Wilhelm, Jr. and D. S. Howarth, Am. Ceram. Soc. Bull. 58, 1185 (1979); J. N. Karavaev, S. F. Palguev, and A. D. Neujmin, in High Tech. Ceramics, edited by P. Vincenzini, (Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1987), p. 247.

    Google Scholar 

  23. A. Karas, R. Sossen, and W.R. Cannon, Presentation (3-JV-90) at the 92nd Annual Meeting of the American Ceramic Society, Dallas, Texas, 22–26 April (1990).

  24. R.P. Ingel and D. Lewis III, J. Am. Ceram. Soc. 69, 325 (1986).

    Article  CAS  Google Scholar 

  25. G. K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  CAS  Google Scholar 

  26. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  27. D. J. Kim, J. Am. Ceram. Soc. 72, 1415 (1989).

    Article  CAS  Google Scholar 

  28. V. B. Glushkova, F. Hanic, and L.V. Sazonova, Ceram. Int. 4, 176 (1978).

    Article  CAS  Google Scholar 

  29. P. Li, I. W. Chen, and J. E. Penner-Hahn, J. Am. Ceram. Soc. 77, 118 (1994).

    Article  CAS  Google Scholar 

  30. R. Manner, E. Ivers-Tiffee, and W. Wersing, Proc. 2nd Int. Symp. on SOFC, Greece, edited by F. Gross, P. Zegers, S.C. Singhal, and O. Yamamoto (CEC Publ. No. EUR 13564, 1991), p. 715.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, JH., Lin, SC. Effects of Borosilicate Glass on Densification and Properties of Borosilicate Glass + TiO2 Ceramics. Journal of Materials Research 14, 1359–1363 (1999). https://doi.org/10.1557/JMR.1999.0185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0185

Navigation