Skip to main content
Log in

Nanoindentation and incipient plasticity

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents a large-scale atomic resolution simulation of nanoindentation into a thin aluminum film using the recently introduced quasicontinuum method. The purpose of the simulation is to study the initial stages of plastic deformation under the action of an indenter. Two different crystallographic orientations of the film and two different indenter geometries (a rectangular prism and a cylinder) are studied. We obtain both macroscopic load versus indentation depth curves, as well as microscopic quantities, such as the Peierls stress and density of geometrically necessary dislocations beneath the indenter. In addition, we obtain detailed information regarding the atomistic mechanisms responsible for the macroscopic curves. A strong dependence on geometry and orientation is observed. Two different microscopic mechanisms are observed to accommodate the applied loading: (i) nucleation and subsequent propagation into the bulk of edge dislocation dipoles and (ii) deformation twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Nix, Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  2. A. P. Sutton and J. B. Pethica, J. Phys. : Condens. Matter 2, 5317 (1990).

    Google Scholar 

  3. F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials (Addison-Wesley, Reading, MA, 1966), Chap. 13.

  4. S. J. Sharp, M. F. Ashby, and N. A. Fleck, Acta Metall. Mater. 41, 685 (1993).

    Article  Google Scholar 

  5. W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson, and J. T. Wyrobek, Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  6. N. Gane and F. P. Bowden, J. Appl. Phys. 39, 1432 (1968).

    Article  CAS  Google Scholar 

  7. R. Nowak, C. L. Li, and S. Maruno, J. Mater. Res. 12, 64 (1997).

    Article  CAS  Google Scholar 

  8. P. Tangyunyong, R. C. Thomas, J. E. Houston, T. A. Michalske, R. M. Crooks, and A. J. Howard, Phys. Rev. Lett. 71, 3319 (1993).

    Article  CAS  Google Scholar 

  9. G. M. Pharr and W. C. Oliver, J. Mater. Res. 4, 94 (1989).

    Article  CAS  Google Scholar 

  10. U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, Science 248, 454 (1990).

    Article  CAS  Google Scholar 

  11. J. S. Kallman, W. G. Hoover, C. G. Hoover, A. J. De Groot, S. M. Lee, and F. Wooten, Phys. Rev. B 47, 7705 (1993).

    Article  CAS  Google Scholar 

  12. J. Belak, J. N. Glosli, D. B. Boercker, and I. F. Stowers, in Modelling and Simulation of Thin-Film Processing, edited by D. Srolovitz, C. A. Volkert, M. J. Fluss, and R. J. Kee (Mater. Res. Soc. Symp. Proc. 389, Pittsburgh, PA, 1995), p. 181.

  13. E. B. Tadmor, The Quasicontinuum Method, Ph.D. Thesis, Brown University, 1996.

  14. E. B. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag. A73, 1529 (1996).

    Article  Google Scholar 

  15. E. B. Tadmor, R. Phillips, and M. Ortiz, Langmuir 12, 4529 (1996).

    Article  CAS  Google Scholar 

  16. V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips, and M. Ortiz, Phys. Rev. Lett. 80, 742 (1998).

    Article  CAS  Google Scholar 

  17. V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, J. Mech. Phys. Solids 47, 611 (1999).

    Article  Google Scholar 

  18. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1989).

  19. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  20. M. S. Daw, Many-Atom Interactions in Solids, Springer Proceedings in Physics (Springer-Verlag, Berlin, 1990), Vol. 48, p. 48.

  21. F. Ercolessi and J. Adams, Europhys. Lett. 26, 583 (1994).

    Article  CAS  Google Scholar 

  22. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Krieger, Malabar, FL, 1992), pp. 317, 424.

  23. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, 3rd ed. (P. Noordhoff Ltd., Groningen, The Netherlands, 1953), pp. 481–483.

  24. A. V. Kulkarni and B. Bhushan, Mater. Lett. 29, 221 (1996).

    Article  CAS  Google Scholar 

  25. Q. Ma and D. R. Clarke, J. Mater. Res. 10, 853 (1995).

    Article  CAS  Google Scholar 

  26. M. J. Mills and P. Stadelmann, Philos. Mag. A 60, 355 (1989).

    Article  CAS  Google Scholar 

  27. J. Friedel, Dislocations (Addison-Wesley, Reading, MA, 1967), pp. 40, 45, 54, 230.

  28. T. Kosugi and T. Kino, Mater. Sci. Eng. A 164, 368 (1993).

    Article  Google Scholar 

  29. T. Egami and D. Srolovitz, J. Phys. F: Met. Phys. 12, 2141 (1982).

    Article  CAS  Google Scholar 

  30. V. Vitek and T. Egami, Phys. Status Solidi B 144, 145 (1987).

    Article  CAS  Google Scholar 

  31. D. François, A. Pineau, and A. Zaoui, Comportement Mecanique des Materiaux (elasticite et plasticite), 3rd ed. (Hermes, Paris, 1995), pp. 189–190.

  32. W. D. Nix, Mater. Sci. Eng. A234, 37 (1997).

    Article  Google Scholar 

  33. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  34. J. A. Venables, in Deformation Twinning, Proceedings of the Metallurgical Society Conference, edited by R. E. Reed-Hill (Gordon and Breach Science Publishers, 1963), Vol. 25, p. 77.

  35. P. Rosakis and H. Tsai, Mech. Mater. 17, 245 (1994).

    Article  Google Scholar 

  36. R. C. Pond and L. M. F. Garcia-Garcia, Inst. Phys. Conf. Ser., No. 61, 495 (1981).

    Google Scholar 

  37. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11 085 (1998).

  38. A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Addison-Wesley, Reading, MA, 1970), p. 311.

  39. L. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet, Solid State Phenom. 23 & 24, 455 (1992).

    Article  Google Scholar 

  40. M. Fivel, M. Verdier, and G. Canova, Mater. Sci. Eng. A234–236, 923 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadmor, E.B., Miller, R., Phillips, R. et al. Nanoindentation and incipient plasticity. Journal of Materials Research 14, 2233–2250 (1999). https://doi.org/10.1557/JMR.1999.0300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0300

Navigation