Skip to main content
Log in

Nanophase Fe alloys consolidated to full density from mechanically milled powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanophase elemental Fe powders prepared by mechanical milling were sinter forged to full density with an average grain size in the nanophase range (below 100 nm). If Cu additions are introduced during milling to form supersaturated solid solutions (Fe85Cu15 and Fe60Cu40), grain sizes can be easily controlled to below 50 nm after consolidation. For Fe-Cu, it was observed that atomic level alloying between the two elements during milling was very helpful for obtaining a homogeneous microstructure and nanocrystalline grain/domain sizes in the consolidated product. The advantages of using sinter forging (upset die forging), as well as the role of the Cu addition, in the retention of nanocrystalline grain sizes are discussed. The consolidated Fe alloys exhibit very high strength under compression, further demonstrating that low populations of flaws and nanophase grain structures were attained in the consolidated products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example, Proceedings of NANO’98, Nanostruct. Mater. 12, Part A and Part B, Special Issue (1999).

  2. C.C. Koch, in Materials Science and Technology, edited by R.W. Cahn, P. Hassen, and E.J. Kramer (VCH, Weinheim, Germany, 1991), Vol. 15, p. 193.

  3. J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Aifantis, Metall. Trans. A. 26, 2479 (1995); G.R. Shaik and W.W. Milligan, Metall. Maters. Trans. A 28, 895 (1997).

    Article  Google Scholar 

  4. J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Aifantis, Metall. Mater. Trans. A 29, 2261 (1998).

    Article  Google Scholar 

  5. J.C. Rawers and G. Korth, Nanostruct. Mater. 7, 25 (1996).

    Article  CAS  Google Scholar 

  6. R.J. Perez, B. Huang, and E.J. Lavernia, Nanostruct. Mater. 7, 565 (1996).

    Article  CAS  Google Scholar 

  7. T.R. Malow, C.C. Koch, P.Q. Miraglia, and K.L. Murty, Mater. Sci. Eng. A 252, 36 (1998).

    Article  Google Scholar 

  8. T.R. Malow and C.C. Koch, Acta Mater. 45, 2177 (1997).

    Article  CAS  Google Scholar 

  9. C.C. Koch (private communications).

  10. L. He and E. Ma, J. Mater. Res. 11, 72 (1996).

    Article  CAS  Google Scholar 

  11. L. He and E. Ma, Nanostruct. Mater. 7, 327 (1996); L. He, L.F. Allard and E. Ma, Nanostruct. Mater. 12, 543 (1999).

    Article  CAS  Google Scholar 

  12. J. Xu, J.H. He, and E. Ma, Metall. Trans. A 28, 1569 (1997).

    Article  Google Scholar 

  13. H.H. Hausner and M.K. Mal, Handbook of Powder Metallurgy, 2nd ed. (Chemical Publishing, New York, 1982), p. 260; R.M. German, Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1994), p. 321.

    Google Scholar 

  14. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Article  CAS  Google Scholar 

  15. D.M. Goodrich and M. Atzmon, Mater. Sci. Forum 225, 223 (1996).

    Article  Google Scholar 

  16. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson, J. Appl. Phys. 73, 2794 (1993).

    Article  CAS  Google Scholar 

  17. E. Ma, M. Atzmon, and F. Pinkerton, J. Appl. Phys. 74, 955 (1993).

    Article  CAS  Google Scholar 

  18. D.G. Morris and M.A. Morris, Acta Metall. Mater. 39, 1763 (1991).

    Article  CAS  Google Scholar 

  19. C. Biselli and D.G. Morris, Acta Mater. 44, 493 (1996).

    Article  CAS  Google Scholar 

  20. R.L. Holtz and V. Provenzano, Nanostruct. Mater. 4, 241 (1994).

    Article  CAS  Google Scholar 

  21. T.R. Malow and C.C. Koch, Metall. Mater. Trans. A29, 2285 (1998).

    Article  Google Scholar 

  22. L. He and E. Ma, Mater. Sci. Eng. A 204, 240 (1995).

    Article  Google Scholar 

  23. R.R. Vance and T.H. Courtney, Scr. Metall. Mater. 26, 1435 (1992).

    Article  CAS  Google Scholar 

  24. H. Hahn, J. Logas, and R.S. Averback, J. Mater. Res. 5, 609 (1990).

    Article  CAS  Google Scholar 

  25. H. Hahn and H. Gleiter, Scr. Metall. 13, 3 (1979).

    Article  CAS  Google Scholar 

  26. J. Eckert, J.C. Holzer, and W.L. Johnson, J. Appl. Phys. 73, 131 (1993).

    Article  CAS  Google Scholar 

  27. G.B. Schaffer, Scr. Metall. Mater. 27, 1 (1992).

    Article  CAS  Google Scholar 

  28. D. Ostwaldt, J.R. Klepaczko, and P.J. Klimanik, J. Phys IV 7, C3–385 (1997).

    Google Scholar 

  29. M.G. da Silva and K.T. Ramesh, Int. J. Plast. 13, 587 (1997).

    Article  Google Scholar 

  30. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45, 4019 (1997).

    Article  CAS  Google Scholar 

  31. N. Wang, Z. Wang, K.T. Aust, and U. Erb, Acta Metall. Mater. 43, 519 (1995).

    Article  CAS  Google Scholar 

  32. H. Van Swygenhoven and A. Caro, Appl. Phys. Lett. 71, 12 (1997).

    Google Scholar 

  33. J. Schiotz, F.D. DiTolla, and K.W. Jacobsen, Nature 391, 561 (1998).

    Article  Google Scholar 

  34. J.E. Carsley, Ph.D. Thesis, Michigan Technological University (1996), p. 73.

  35. D. Jia, K.T. Ramesh, and E. Ma, Script. Mater. 42, 73 (2000).

    Article  CAS  Google Scholar 

  36. T. Malow and C.C. Koch, Acta Mater. 46, 6459 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Allard, L.F., Breder, K. et al. Nanophase Fe alloys consolidated to full density from mechanically milled powders. Journal of Materials Research 15, 904–912 (2000). https://doi.org/10.1557/JMR.2000.0129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0129

Navigation