Skip to main content
Log in

Thermodynamic stability of tetragonal zirconia nanocrystallites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermodynamic stability of tetragonal (t-) ZrO2 nanocrystallites below the bulk stability temperature 1200 °C was studied through specially synthesized crystallites that exhibited an extremely slow coarsening rate. The nanocrystallites were mechanically transformed to the monoclinic (m-) structure, and, because the crystallite size was kept below approximately 20 nm, the t-structure was completely recovered solely by thermal treatments between 900 and 1100 °C. These results gave strong evidence to the notion that, for sufficiently small crystallite size, nanocrystalline t-ZrO2 is not just kinetically metastable but can be truly thermodynamically more stable than the mpolymorph in air below 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hino and K. Arata, J. Chem. Soc., Chem. Commun. 851 (1980).

  2. K. Arata, Adv. Catal. 37, 165 (1990).

    CAS  Google Scholar 

  3. K. Tanabe and T. Yamaguchi, Catal. Today 20, 185 (1994).

    Article  CAS  Google Scholar 

  4. K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 308 (1957).

    Article  CAS  Google Scholar 

  5. R.C. Garvie, R.H. Hannick, and R.T. Pascoe, Nature 258, 703 (1975).

    Article  CAS  Google Scholar 

  6. F. Wakai, S. Sakaguchi, and Y. Matsuno, Adv. Ceram. Mater. 1, 259 (1986).

    Article  CAS  Google Scholar 

  7. I.W. Chen and L.A. Xue, J. Am. Ceram. Soc. 73, 2585 (1990).

    Article  CAS  Google Scholar 

  8. S.L. Hwang and I.W. Chen, J. Am. Ceram. Soc. 73, 3269 (1990).

    Article  CAS  Google Scholar 

  9. H.G. Scott, J. Mater. Sci. 10, 1527 (1975).

    Article  CAS  Google Scholar 

  10. G.L. Clark and D.H. Reynolds, Ind. Eng. Chem. 29, 711 (1937).

    Article  CAS  Google Scholar 

  11. A. Clearfield, Inorg. Chem. 3, 146 (1964).

    Article  CAS  Google Scholar 

  12. T. Ogihara, N. Mizutani, and M. Kato, Ceram. Int. 13, 35 (1987).

    Article  CAS  Google Scholar 

  13. R. Dayal, N.M. Gokhale, S.C. Sharma, R. Lal, and R. Krishnan, Br. Ceram. Trans. J. 91, 45 (1992).

    CAS  Google Scholar 

  14. B. Djuricic, S. Pickering, D. McGarry, P. Glaude, P. Tambuyser, and K. Schuster, Ceram. Int. 21, 195 (1995).

    Article  CAS  Google Scholar 

  15. R.C. Garvie, J. Phys. Chem. 69, 1238 (1965).

    Article  CAS  Google Scholar 

  16. R.C. Garvie, J. Phys. Chem. 82, 218 (1978).

    Article  CAS  Google Scholar 

  17. R.P. Denkewicz, Jr., K.S. TenHuisen, and J.H. Adair, J. Mater. Res. 5, 2698 (1990).

    Article  CAS  Google Scholar 

  18. Y. Murase and E. Kato, J. Am. Ceram. Soc. 66, 196 (1983).

    Article  CAS  Google Scholar 

  19. P.E.D. Morgan, J. Am. Ceram. Soc. 67, C204 (1984).

  20. D.E. Collins and K.J. Bowman, J. Mater. Res. 13, 1230 (1998).

    Article  CAS  Google Scholar 

  21. R. Srinivasan, C.R. Hubbard, O.B. Calvin, and B.H. Davis, Chem. Mater. 5, 27 (1993).

    Article  CAS  Google Scholar 

  22. E. Tani, M. Yoshimura, and S. Komiya, J. Am. Ceram. Soc. 66, 11 (1983).

    Article  CAS  Google Scholar 

  23. J. Livage, K. Doi, and C. Mazieres, J. Am. Ceram. Soc. 51, 349 (1968).

    Article  CAS  Google Scholar 

  24. I. Osendi, J.S. Moya, C.J. Serna, and J. Soria, J. Am. Ceram. Soc. 57, 97 (1974).

    Article  Google Scholar 

  25. N.L. Wu, S.Y. Wang, and I.A. Rusakova, Science 285, 1375 (1999).

    Article  CAS  Google Scholar 

  26. International Center for Diffraction Data, PDF #42-1164 and 37-1484 (Newtown Square, PA).

  27. H. Toraya, M. Yoshimura, and S. Somiya, J. Am. Ceram. Soc. 67, C119 (1984).

  28. A.H. Heuer, M. Rühle, and D.B. Marshall, J. Am. Ceram. Soc. 73, 1084 (1990).

    Article  CAS  Google Scholar 

  29. R.H.J. Hannink and M.V. Swain, J. Am. Ceram. Soc. 72, 90 (1989).

    Article  Google Scholar 

  30. R. Ge, Z. Liu, H. Chen, D. Zhang, and T. Zhao, Ceram. Int. 22, 123 (1996).

    Article  CAS  Google Scholar 

  31. P.E. Reyes-Morel, J.S. Cherng, and I.W. Chen, J. Am. Ceram. Soc. 71, 648 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, NL., Wu, TF. & Rusakova, I.A. Thermodynamic stability of tetragonal zirconia nanocrystallites. Journal of Materials Research 16, 666–669 (2001). https://doi.org/10.1557/JMR.2001.0114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0114

Navigation