Skip to main content
Log in

Small correction required when applying the Hertzian contact model to instrumented indentation data

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Instrumented indentation testing (IIT) is a relatively new form of mechanical testing which significantly expands on the capabilities of traditional hardness testing. In an IIT experiment, an indenter of known mechanical properties is pressed into contact and then withdrawn from a test material. The fundamental measurements during an IIT experiment are the applied load and the resulting penetration of the indenter into the test surface. The Hertzian contact model, or a derivative thereof, is often employed to relate these measurements to interesting mechanical properties of the test material. This article argues for a small correction to the Hertzian contact model when applied to instrumented indentation data. The magnitude of the correction primarily depends on Poisson’s ratio of the test material and the contact radius normalized by the radius of the indenter tip. Neglecting this correction can cause significant errors in the calculation of elastic modulus and hardness from instrumented indentation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hay and G.M. Pharr, in ASM Handbook: Mechanical Testing and Evaluation (ASM International, Materials Park, OH, 2000), vol. 8 (in press).

    Google Scholar 

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. H. Hertz, Misc. Papers by H. Hertz (Macmillan and Co., Ltd., London, U.K., 1896) pp. 147–162.

  4. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  5. J.S. Field and M.V. Swain, J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  6. M.V. Swain, Mater. Sci. Eng. A 253, 160 (1998).

    Article  Google Scholar 

  7. A. Strojny, E.T. Lilleodden, G. Wang, J.V. Sivertsen, and W.W. Gerberich, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 281.

  8. T.Y. Tsui, W.C. Oliver, and G.M. Pharr, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 147.

  9. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, and G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975).

    CAS  Google Scholar 

  10. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, and A.P. Ternovskii, Probl. Prochn. 9, 79 (1976).

    Google Scholar 

  11. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  12. A.E.H. Love, Q. J. Math. 10, 161 (1939).

    Article  Google Scholar 

  13. A.E.H. Love, Philos. Trans. A 228, 377 (1929).

    Google Scholar 

  14. J.W. Harding and I.N. Sneddon, Proc. Cambridge Philos. Soc. 41, 16 (1945).

    Article  Google Scholar 

  15. I.N. Sneddon, Int. J. Engng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  16. I.N. Sneddon, Fourier Transforms (McGraw-Hill, New York, 1951), pp. 450–467.

    Google Scholar 

  17. E.H. Yoffe, Phil. Mag. A, 50, 813 (1984).

    Article  Google Scholar 

  18. A. Bolshakov and G.M. Pharr, J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  19. A. Bolshakov and G.M. Pharr, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, and J-E. Sundgren (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 141.

  20. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  21. J.C. Hay, A. Bolshakov, and G.M. Pharr, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 263.

  22. J.C. Hay, A. Bolshakov, and G.M. Pharr, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 39.

  23. D. Tabor, Hardness of Metals (Oxford University Press, New York, 1951), pp. 67–83, 105–106.

    Google Scholar 

  24. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985), pp. 61, 176.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, J.L., Wolff, P.J. Small correction required when applying the Hertzian contact model to instrumented indentation data. Journal of Materials Research 16, 1280–1286 (2001). https://doi.org/10.1557/JMR.2001.0179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0179

Navigation