Skip to main content
Log in

Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microchemistry and mechanical properties of a copper/tin–bismuth Pb-free solder interconnect were examined in the as-reflowed and aged conditions by in situ Auger fracture and interface fracture mechanics techniques. In the as-reflowed condition, the solder–copper interface was highly resistant to fracture, and the fracture mechanism was ductile with the crack path following the interface between the solder alloy and the copper–tin intermetallic phase. Upon thermal aging, bismuth segregation was found to occur on the copper–intermetallic interface. Auger depth profiling indicated that the segregation was confined to about one monolayer from the interface. The segregation was shown to embrittle the interface, resulting in an approximately 5-fold decrease in the interfacial fracture resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.C. Mei, F. Hua, and J. Glazer, in Proceedings of SMTA International, (SMTA International, Edina, MN, 1999), p. 399.

  2. N C. Lee, Adv. Microelectr. 26, 29 (1999).

    CAS  Google Scholar 

  3. F. Hua, Z. Mei, and J. Glazer, in Proceedings of 48th Electronic Components and Technology Conference, (IEEE, New York, 1998), p. 277. .

    Google Scholar 

  4. N.C. Lee, Solder. Surf. Mount Technol. 9, 65 (1997).

    Article  CAS  Google Scholar 

  5. Y. Yamagishi, M. Ochiai, H. Ueda, T. Nakanishi, and M. Kitazima, in Proceedings of the 9th International Microelectronics Conference, (ISHM, Tokyo, Japan, 1996) p. 252. .

    Google Scholar 

  6. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    Article  CAS  Google Scholar 

  7. Z. Mei and J.W. Morris, Jr., J. Electron. Mater. 21, 599 (1992).

    Article  CAS  Google Scholar 

  8. W.J. Tomlinson and I.J. Collier, J. Mater. Sci. 22, 1835 (1987).

    Article  CAS  Google Scholar 

  9. D.R. Frear and P.T. Vianco, Metall. Mater. Trans. 25A, 1509 (1994).

    Article  CAS  Google Scholar 

  10. A.J. Sunwoo, J.W. Morris, Jr., and G.K. Lucey, Jr., Metall. Mater. Trans. 23A, 1323 (1992).

    Article  CAS  Google Scholar 

  11. D. Yao and J.K. Shang, Metall. Mater. Trans. 26A, 2677 (1995).

    Article  CAS  Google Scholar 

  12. P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).

    Article  CAS  Google Scholar 

  13. L.E. Felton, C.H. Raeder, and D.B. Knorr, J. Met. 45, 28 (1993).

    CAS  Google Scholar 

  14. P.T. Vianco, A.C. Kilgo, and R. Grant, J. Electron. Mater. 24, 1493 (1995).

    Article  CAS  Google Scholar 

  15. B.D. Powell and H. Mykura, Acta Mater. 21, 1151 (1973).

    Article  CAS  Google Scholar 

  16. L.S. Chang, E. Rabkin, B.B. Straumal, B. Baretzky, and W. Gust, Acta Mater. 47, 4041 (1999).

    Article  CAS  Google Scholar 

  17. J.R. Michael and D.B. Williams, Metall. Mater. Trans. A 15A, 99 (1984).

    Article  CAS  Google Scholar 

  18. M. Menyhard, B. Blum, and C.J. McMahon Jr., Acta Mater. 37, 549 (1989).

    Article  CAS  Google Scholar 

  19. F.X. Zhou, B.Y. Peng, and X.J. Wu, J. Appl. Phys. 68, 548 (1990).

    Article  CAS  Google Scholar 

  20. D.E. Luzzi, M. Yan, M. Sob, and V. Vitek, Phys. Rev. Lett. 67, 1894 (1991).

    Article  CAS  Google Scholar 

  21. M. Yan, M. Sob, D.E. Luzzi, and V. Vitek, Phys. Rev. B 47, 5571 (1993).

    Article  CAS  Google Scholar 

  22. L.S. Chang, E. Rabkin, B. Baretzky, and W. Gust, Scripta Mater. 38, 1033 (1998).

    Article  CAS  Google Scholar 

  23. U. Alber, H. Mullejans, and M. Ruhle, Acta Mater. 47, 4047 (1999).

    Article  CAS  Google Scholar 

  24. L.S. Chang, E. Rabkin, S. Hofmann, and W. Gust, Acta Mater. 47, 2951 (1999).

    Article  CAS  Google Scholar 

  25. Z. Zhang and J.K. Shang, Metall. Mater. Trans. A 27A, 205 (1996).

    Article  CAS  Google Scholar 

  26. Z. Zhang, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois (1997).

  27. P.L. Liu and J.K. Shang, J. Electron. Mater. 29, 622 (2000).

    Article  CAS  Google Scholar 

  28. P.L. Liu and J.K. Shang, Metall. Mater. Trans. A 31A, 286 (2000).

    Google Scholar 

  29. R.O. Ritchie, Int. Metals Rev. 20, 205 (1979).

    Google Scholar 

  30. D. Tribula and J.W. Morris, Jr., J. Electron. Packaging 112, 87 (1990).

    Article  Google Scholar 

  31. P.A. Kramer, J. Glazer, and J.W. Morris, Jr., Metall. Mater. Trans. 25A, 1249 (1995).

    Google Scholar 

  32. D.R. Frear, F.M. Hosking, and P.T. Vianco, in Materials Developments in Microelectronic Packaging Conference Proceedings, (Montreal, Quebec, Canada, 1991), p. 229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.L., Shang, J.K. Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect. Journal of Materials Research 16, 1651–1659 (2001). https://doi.org/10.1557/JMR.2001.0229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0229

Navigation