Skip to main content
Log in

Development of nanocrystalline structure during cryomilling of Inconel 625

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline Inconel 625 alloy, with a uniform distribution of grains, was synthesized using cryogenic mechanical milling. Microstructures of the powder, cryomilled for different times, were investigated using transmission electron microscopy (TEM), scanning electron microscopy, and x-ray diffraction. The results indicated that both the average powder particle size and average grain size approached constant values as cryomilling time increased to 8 h. The TEM observations indicated that grains in the cryomilled powder were deformed into elongated grains with a high density of deformation faults and then fractured via cyclic impact loading in random directions. The fractured fragments from the elongated coarse grains formed nanoscale grains. The occurrence of the elongated grains, from development to disappearance during intermediate stages of milling, suggested that repeated strain fatigue and fracture, caused by the cyclic impact loading in random directions, and cold welding were responsible for the formation of a nanocrystalline structure. A high density of mechanical nanotwins on {111} planes was observed in as-cryomilled Inconel 625 powders cryomilled, as well as in Inconel 625 powder milled at room temperature, Ni20Cr powder milled at room temperature, and cryomilled pure Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Benjamin, Metall. Trans. 1, 2943 (1970).

    CAS  Google Scholar 

  2. P.S. Gilman and J.S. Benjamin, Annu. Rev. Mater. Sci. 13, 279 (1983).

    Article  CAS  Google Scholar 

  3. J.S. Benjamin, Mater. Sci. Forum 88-90, 1 (1992).

    Article  Google Scholar 

  4. E. Hellstern, H.J. Fecht, Z. Fu, and W.L. Johnson, J. Mater. Res. 4, 1292 (1989).

    Article  CAS  Google Scholar 

  5. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson, Metall. Trans. A 21A, 2333 (1990).

    Article  CAS  Google Scholar 

  6. E. Hellstern, H.J. Fecht, C. Garland, and W.L. Johnson, J. Appl. Phys. 65, 305 (1989).

    Article  CAS  Google Scholar 

  7. H.J. Fecht, Nanostruct. Mater. 6, 33 (1995).

    Article  CAS  Google Scholar 

  8. J. Eckert, J.C. Holzer, C.E. Kill, III, and W.L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Article  CAS  Google Scholar 

  9. J.S.C. Jang and C.C. Koch, J. Mater. Res. 5, 489 (1990).

    Google Scholar 

  10. C.C. Koch, Nanostruct. Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  11. C.C. Koch, Nanostruct. Mater. 9, 13 (1997).

    Article  CAS  Google Scholar 

  12. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  13. B.S. Murty and S. Ranganathan, Int. Mater. Rev. 43, 101 (1998).

    Article  CAS  Google Scholar 

  14. H.J. Fecht, G. Han, Z. Fu, and W.L. Johnson, J. Appl. Phys. 67, 1744 (1990).

    Article  CAS  Google Scholar 

  15. J. He, M. Ice, S. Dallek, and E.J. Lavernia, Metall. Trans. A 31A, 541 (2000).

    Article  CAS  Google Scholar 

  16. J. He, M. Ice, and E.J. Lavernia, Metall. Trans. A 31A, 555 (2000).

    Article  CAS  Google Scholar 

  17. H.K. Kohl and K. Peng, J. Nucl. Mater. 101, 243 (1981).

    Article  CAS  Google Scholar 

  18. H.K.D.H. Bhadeshia, Mater. Sci. Eng. A223, 64 (1997).

    Article  CAS  Google Scholar 

  19. H. Edris, D.G. Mccartney, and A.J. Strgeon, J. Mater. Sci. 32, 863 (1997).

    Article  CAS  Google Scholar 

  20. J. He, M. Ice, and E.J. Lavernia, Nanostruct. Mater. 10, 1271 (1998).

    Article  CAS  Google Scholar 

  21. J.H. Ahn, H.S. Chung, R. Watanabe, and Y.H. Park, Mater. Sci. Forum. 88-90, 347 (1992).

    Article  Google Scholar 

  22. M.L. Lau, H.G. Jiang, W. Nuchter, and E.J. Lavernia, Phys. Status Solidi A 166, 257 (1998).

    Article  CAS  Google Scholar 

  23. H.G. Jiang, M. Ruhle, and E.J. Lavernia, J. Mater. Res. 14, 549 (1999).

    Article  CAS  Google Scholar 

  24. H.P. Klug and I.E. Alexander, in X-ray Diffraction Procedure (John Wiley & Sons, New York, 1974), p. 643.

    Google Scholar 

  25. K. Sobczyk and B.F. Spencer, Jr., in Random Fatigue from Data to Theory (Academic Press, San Diego, CA, 1992), p. 32.

    Google Scholar 

  26. A. Plumtree and L.D. Pawlus, Substructural Developments During Strain Cycling of Wavy Slip Mode Metals, in Basic Questions in Fatigue, edited by Fong and Fields (American Society for Testing and Materials, Philadelphia, PA, 1988), Vol. 1, ASTM STP 924, pp. 81-97.

  27. T. Tanaka and M. Kosugi, Crystallographic Study of the Fatigue Crack Nucleation Mechanism in Pure Iron, in Basic Questions in Fatigue, edited by Fong and Fields (American Society for Testing and Materials, Philadelphia, PA, 1988), Vol. 1, ASTM STP 924, pp. 98-119.

  28. J. He, S. Fukuyama, and K. Yokogawa, Mater. Sci. Technol. 11, 914 (1995).

    Article  CAS  Google Scholar 

  29. J. He, G. Han, S. Fukuyama, and K. Yokogawa, Mater. Sci. Technol. 15, 909 (1999).

    Article  CAS  Google Scholar 

  30. G.W. Neiman, J.R. Weertman, and R.W. Siegel, Scr. Met. Mater. 24, 145 (1990).

    Article  Google Scholar 

  31. G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  32. G.J. Thomas, R.W. Siegel, and J.A. Eastman, Scr. Met. Mater. 24, 201 (1990).

    Article  CAS  Google Scholar 

  33. W. Wunderlich, I. Ishida, and R. Maurer, Scr. Met. Mater. 24, 403 (1990).

    Article  CAS  Google Scholar 

  34. P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung, and Y.C. Lu, Nanostruct. Mater. 9, 433 (1997).

    Article  CAS  Google Scholar 

  35. P.G. Sanders, A.B. Witney, J.R. Weertman, R.Z. Valiev, and R.W. Siegel, Mater. Sci. Eng. A 204, 7 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Lavernia, E.J. Development of nanocrystalline structure during cryomilling of Inconel 625. Journal of Materials Research 16, 2724–2732 (2001). https://doi.org/10.1557/JMR.2001.0372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0372

Navigation