Skip to main content
Log in

Nanomechanical properties of energetically treated polyethylene surfaces

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effects of energetic treatments, crosslinking, and plasma modification on the surface mechanical properties and deformation behavior of ultrahigh molecular weight polyethylene (UHMWPE) were examined in light of nanoindentation experiments performed with a surface force microscope. Samples of UHMWPE were subjected to relatively high-dose gamma irradiation, oxygen ion implantation, and argon ion beam treatment. A range of crosslinking was achieved by varying the radiation dose. In addition, low-temperature plasma treatment with hexamethyldisiloxane/O2 and C3F6 was investigated for comparison. The surface mechanical properties of the treated UHMWPE samples are compared with those of untreated UHMWPE samples used as controls. Surface adhesion measurements obtained from the nanoindentation material responses are also discussed in terms of important treatment parameters. Results demonstrate that high-dose oxygen ion implantation, argon ion beam treatment, and low-temperature C3F6 plasma modification are effective treatments for enhancing the surface mechanical properties of UHMWPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.K. Muratoglu, C.R. Bragdon, D.O. O’Connor, M. Jasty, W.H. Harris, R. Gul, and F. McGarry, Biomaterials 20, 1463 (1999).

    Article  CAS  Google Scholar 

  2. W. Liu, S. Yang, C. Li, and Y. Sun, Thin Solid Films 323, 158 (1998).

    Article  CAS  Google Scholar 

  3. G.R. Rao, E.I. Lee, R. Bhattacharya, and A.W. McCormick, J. Mater. Res. 10, 190 (1995).

    Article  CAS  Google Scholar 

  4. E.H. Lee, G.R. Rao, M.B. Lewis, and L.K. Mansur, J. Mater. Res. 9, 1043 (1994).

    Article  CAS  Google Scholar 

  5. C. Klapperich, K. Komvopoulos, and L. Pruitt, J. Tribol. 121, 394 (1999).

    Article  CAS  Google Scholar 

  6. A.A. Edidin, L. Pruitt, C.W. Jewett, D.J. Crane, D. Roberts, and S.M. Kurtz, J. Arthroplasty 14, 616 (1999).

    Article  CAS  Google Scholar 

  7. D.A. Baker, R.S. Hastings, and L. Pruitt, J. Biomedical Mater. Res. 46, 573 (1999).

    Article  CAS  Google Scholar 

  8. S. Niederberger, D.H. Gracias, K. Komvopoulos, and G.A. Somorjai, J. Appl. Phys. 87, 3143 (2000).

    Article  CAS  Google Scholar 

  9. B. Mailhot, K. Komvopoulos, B. Ward, Y. Tian, and G.A. Somorjai, J. Appl. Phys. 89, 5712 (2001).

    Article  CAS  Google Scholar 

  10. C. Klapperich, K. Komvopoulos, and L. Pruitt, J. Tribol. 123, 624 (2001).

    Article  CAS  Google Scholar 

  11. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  CAS  Google Scholar 

  12. G.M. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  13. A. Shinde and R. Salovey, J. Polym. Sci. Pol. Phys. 23, 1681 (1985).

    Article  CAS  Google Scholar 

  14. J. Fisher, J.L. Hailey, K.L. Chan, D. Shaw, and M. Stone, Transactions 41st Annual Meeting Orthopaedic Research Society, Orlando, FL, 1995, (ORS, Rosemont, IL), p. 120.

    Article  CAS  Google Scholar 

  15. M.D. Ries, K. Weaver, R.M. Rose, J. Gunther, W. Sauer, and N. Beals, Clinical Orthopaedics Relat. Res. 333, 87 (1996).

    Google Scholar 

  16. M. Goldman, M. Lee, R. Gronsky, and L. Pruitt, J. Biomed. Mater. Res. 37, 43 (1997).

    Google Scholar 

  17. V. Premnath, W.H. Harris, M. Jasty, and E.W. Merrill, Biomaterials 17, 1741 (1996).

    Article  CAS  Google Scholar 

  18. H. Dong and T. Bell, Surf. Coat. Technol. 111, 29 (1999).

    Article  CAS  Google Scholar 

  19. R.C. Giberson, J. Poly. Sci. A 2, 4965 (1964).

    Article  CAS  Google Scholar 

  20. J.H. O’Donnell and D.F. Sangster, Principles of Radiation Chemistry (Elsevier, New York, 1970), p. 176.

    CAS  Google Scholar 

  21. A.R. Denaro and G.G. Jayson, Fundamentals of Radiation Chemistry (Butterworth, London, United Kingdom, 1972), p. 204.

  22. B.D. Ratner, A. Chilkoti, and G.P. Lopez, in Plasma Deposition, Treatment, and Etching of Polymers, edited by R. d’Agostino. (Academic Press, Boston, MA, 1990), pp. 469–470.

    Google Scholar 

  23. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, San Diego, CA, 1996), pp. 105–116.

    Google Scholar 

  24. B.J. Briscoe, in Physiochemical Aspects of Polymer Surfaces (Plenum, New York, 1983), pp. 387– 412.

    Google Scholar 

  25. E. Amitay-Sadovski, B. Ward, G.A. Somorjai, and K. Komvopoulos, J. Appl. Phys. 91, 375 (2002).

    Google Scholar 

  26. E. Amitay-Sadovski, K. Komvopoulos, Y. Tian, and G.A. Somorjai, Appl. Phys. Lett. (2002, in press).

    Article  Google Scholar 

  27. L. Mercier and T.J. Pinnavaia, Chem. Mater. 12, 188 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapperich, C., Pruitt, L. & Komvopoulos, K. Nanomechanical properties of energetically treated polyethylene surfaces. Journal of Materials Research 17, 423–430 (2002). https://doi.org/10.1557/JMR.2002.0059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0059

Navigation