Skip to main content
Log in

Photoluminescence intensity of GaN films with widely varying dislocation density

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigated the impact of the presence of dislocations on room-temperature photoluminescence intensity in GaN films grown by molecular beam epitaxy. To determine both screw and edge dislocation densities, we employed x-ray diffraction in conjunction with a geometrical model, which relate the width of the respective reflections to the polar and azimuthal orientational spread. There is no direct dependence of the emission efficiency on the density of either type of dislocation in the samples under investigation. We conclude that dislocations are not the dominant nonradiative recombination centers for GaN grown by molecular beam epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995).

    Article  CAS  Google Scholar 

  2. T. Mukai, K. Takekawa, and S. Nakamura, Jpn. J. Appl. Phys. 37, 839 (1998).

    Article  Google Scholar 

  3. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).

    Article  CAS  Google Scholar 

  4. J. Elsner, R. Jones, M.I. Heggie, P.K. Sitch, M. Haugk, T. Frauenheim, S. Öberg, and P.R. Briddon, Phys. Rev. B 58, 12571 (1998).

    Article  CAS  Google Scholar 

  5. J. Elsner, R. Jones, P.K. Sitch, V.D. Porezag, M. Elstner, T. Frauenheim, M.I. Heggie, S. Öberg, and P.R. Briddon, Phys. Rev. Lett. 79, 3672 (1997).

    Article  CAS  Google Scholar 

  6. D. Cherns, S.J. Henley, and F.A. Ponce, Appl. Phys. Lett. 78, 2691 (2001).

    Article  CAS  Google Scholar 

  7. J.Y. Shi, L.P. Yu, Y.Z. Wang, G.Y. Zhang, and H. Zhang, Appl. Phys. Lett. 80, 2293 (2002).

    Article  CAS  Google Scholar 

  8. O. Brandt, R. Muralidharan, P. Waltereit, A. Thamm, A. Trampert, H. von Kiedrowski, and K.H. Ploog, Appl. Phys. Lett. 75, 4019 (1999).

    Article  CAS  Google Scholar 

  9. C.D. Lee, A. Sager, R.M. Feenstra, C.K. Inoki, T.S. Kuan, W.L. Sarney, and L. Salamanca-Riba, Appl. Phys. Lett. 79, 3428 (2001).

    Article  CAS  Google Scholar 

  10. H.M. Ng, D. Doppalapudi, T.D. Moustakas, N.G. Weimann, and L.F. Eastman, Appl. Phys. Lett. 73, 821 (1998).

    Article  CAS  Google Scholar 

  11. T. Metzger, R. Ho¨pler, E. Born, O. Ambacher, M. Stutzmann, R. Sto¨mmer, M. Schuster, H. Go¨bel, S. Christiansen, M. Albrecht, et al., Philos. Mag. A 77, 1013 (1998).

    Article  CAS  Google Scholar 

  12. V. Kirchner, M. Fehrer, S. Figge, H. Heinke, S. Einfeldt, D. Hommel, H. Selke, and P.L. Ryder, Phys. Status Solidi B 216, 659 (1999).

    Article  CAS  Google Scholar 

  13. P. Gay, P.B. Hirsch, and A. Kelly, Acta Metall. 1, 315 (1953).

    Article  CAS  Google Scholar 

  14. C.O. Dunn and E.F. Koch, Acta Metall. 5, 548 (1957).

    Article  CAS  Google Scholar 

  15. V. Srikant, J.S. Speck, and D.R. Clarke, J. Appl. Phys. 82, 4286 (1997).

    Article  CAS  Google Scholar 

  16. Y.J. Sun, O. Brandt, T.Y. Liu, A. Trampert, K.H. Ploog, J. Bla¨sing, and A. Krost, Appl. Phys. Lett. 81, 4928 (2002).

    Article  CAS  Google Scholar 

  17. M. Grundmann, J. Christen, D. Bimberg, A. Fischer-Colbrie, and R. Hull, J. Appl. Phys. 66, 2214 (1989).

    Article  CAS  Google Scholar 

  18. T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, and S.S.L.T. Romano, Jpn. J. Appl. Phys. 37, 398 (1998).

    Article  Google Scholar 

  19. J.C. Gonzalez, K.L. Bunker, and P.E. Russell, Appl. Phys. Lett. 79, 1567 (2001).

    Article  CAS  Google Scholar 

  20. X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Samler, and M. Razeghi, Appl. Phys. Lett. 67, 2028 (1995).

    Article  CAS  Google Scholar 

  21. S.D. Hersee, J. Ramer, and K.J. Malloy, MRS Bull. 7, 54 (1997).

    Google Scholar 

  22. J. Ding, J.S.C. Chang, and M. Bujatti, Appl. Phys. Lett. 50, 1089 (1987).

    Article  CAS  Google Scholar 

  23. N.S. Kang, T.E. Zirkle, and D.K. Schroder, J. Appl. Phys. 72, 82 (1992).

    Article  CAS  Google Scholar 

  24. J.L. Weyher, M. Albreht, T. Wosin´ski, G. Nowak, H.P. Strunk, S. Porowski, Mater. Sci. Eng. B 80, 318 (2001).

    Article  Google Scholar 

  25. H. Lei, H.S. Leipner, J. Shreiber, J.L. Weyher, T. Wosin´ski, and I. Grzegory, J. Appl. Phys. 92, 6666 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Jun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y.J., Brandt, O. & Ploog, K.H. Photoluminescence intensity of GaN films with widely varying dislocation density. Journal of Materials Research 18, 1247–1250 (2003). https://doi.org/10.1557/JMR.2003.0171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0171

Navigation