Skip to main content
Log in

Microwave-assisted synthesis of calcium phosphate nanowhiskers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Calcium phosphate [single-phase hydroxyapatite (HA), single-phase tricalcium phosphate (TCP), and biphasic HA-TCP] nanowhiskers and/or powders were produced by using a novel microwave-assisted “combustion synthesis (auto ignition)/molten salt synthesis” hybrid route. This work is an example of our “synergistic processing” philosophy combining these three technologies while taking advantage of their useful aspects. Aqueous solutions containing NaNO3, Ca(NO3)2·4H2O and KH2PO4 (with or without urea) were irradiated in a household microwave oven for 5 min at 600 watts of power. The as-synthesized precursors were then simply stirred in water at room temperature for 1 h to obtain the nanowhiskers or powders of the desired calcium phosphate bioceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench: Bioceramics: From concept to clinic. J. Am. Ceram. Soc, 74, 1478 (1991).

    Article  Google Scholar 

  2. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobock, J.F. Kay, and R.H. Doremus: Hydroxyapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027 (1976).

    Article  CAS  Google Scholar 

  3. M. Asada, Y. Miura, A. Osaka, K. Oukami, and S. Nakamura: Hydroxyapatite crystal growth on calcium hydroxyapatite ceramics. J. Mater Sci 23, 3202 (1988).

    Article  CAS  Google Scholar 

  4. C.P.A.T. Klein, J.M.A. de Blieck-Hogerworst, J.G.C. Wolke, and K de Groot: Studies of solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 11, 509 (1990).

    Article  CAS  Google Scholar 

  5. E. Ebrahimpour, M. Johnson, C.F. Richardson, and G.H. Nancollas: The characterization of HA precipitation. J. Colloid Interf. Sci. 159, 158 (1993).

    Article  CAS  Google Scholar 

  6. A.C. Tas, F. Korkusuz, M. Timucin, and N. Akkas: An investigation of the chemical synthesis and high-temperature sintering behavior of calcium HA and TCP bioceramics. J. Mater. Sci. Mater. Med., 8, 91 (1997).

    CAS  Google Scholar 

  7. D. Bayraktar and A.C. Tas: Formation of Hydroxyapatite Precursors at 37 °C in urea- and enzyme urease-containing body fluids. J. Mater. Sci. Lett. 20, 401 (2001).

    Article  CAS  Google Scholar 

  8. N. Kivrak and A.C. Tas: Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc. 81, 2245 (1998).

    Article  CAS  Google Scholar 

  9. G. Daculsi, O. Laboux, O. Malard, and P. Weiss: Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med., 14, 195 (2003).

    Article  CAS  Google Scholar 

  10. R.H.G.A. Kiminami, M.R. Morelli, D.C. Folz, and D.E. Clark: Microwave synthesis of alumina powders. Am. Ceram. Soc. Bull. 79, 63 (2000).

    CAS  Google Scholar 

  11. R.H.G.A. Kiminami, M.R. Morelli, D.C. Folz, and D.E. Clark: Synthesis of Al2O3/SiC powders using microwave-induced combustion reaction. Mater. Trans. 42, 1661 (2001).

    Article  CAS  Google Scholar 

  12. J.J. Kingsley and K.C. Patil: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427 (1988).

    Article  CAS  Google Scholar 

  13. S. Bhaduri, S.B. Bhaduri, and K.A. Prisbrey: Auto ignition synthesis of nanocrystalline of MgAl2O4 and related nanocomposites. J. Mater. Res. 14, 3571 (1999).

    Article  CAS  Google Scholar 

  14. S.B. Bhaduri, S. Bhaduri, J.G. Huang, and W.R. Tinga: Auto ignition synthesis and microwave sintering of CaO-stabilized nano ZrO2. Ceram. Eng. Sci. Proc. 20, 227 (1999).

    Article  CAS  Google Scholar 

  15. A.C. Tas: Combustion synthesis of calcium phosphate bioceramic powders. J.Eur. Ceran Soc. 20, 2389 (2000)

    Article  CAS  Google Scholar 

  16. M.P. Pechini: Method of preparing lead and alkaline earth titan-ates and niobates and coating method using the same to form a capacitor. U.S. Patent No. 3 330 697, 1967.

  17. J. Pena and M. Vallet-Regi: Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J. Eur. Ceram Soc. 23, 1687 (2003)

    Article  CAS  Google Scholar 

  18. R.H. Arendt: The molten salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals. J. Solid State Chem. 8, 339 (1973).

    Article  CAS  Google Scholar 

  19. A.C. Tas: Molten salt synthesis of calcium hydroxyapatite whiskers. J. Am. Ceram. Soc. 84, 295 (2001).

    Article  CAS  Google Scholar 

  20. A.C. Tas: X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr. 16, 102 (2001).

    Article  CAS  Google Scholar 

  21. H. Varma, K.G. Warrier, and A.D. Damodaran: Metal nitrate-urea decomposition route for Y–Ba–Cu–O powder. J. Am Ceram Soc. 73, 3103 (1990).

    Article  CAS  Google Scholar 

  22. Handbook of Chemistry and Physics, 72nd edition, edited by D.R. Lide (CRC Press, Boca Raton, FL, 1992), pp. 4–99.

  23. P. Afanasiev and C. Geantet: Effect of alkali metal cations on the properties of zirconia prepared in molten nitrates. Mater. Chem. Phys, 41, 18 (1995).

    Article  CAS  Google Scholar 

  24. L. Saadi, R. Moussa, A. Samdi, and A. Mosset: Synthesis of mul-lite precursors in molten salts. Influence of the molten alkali nitrate and additives. J. Eur Ceram Soc 19, 517 (1999).

    Article  CAS  Google Scholar 

  25. F. Bondioli, A.B. Corradi, C. Leonelli, and T. Manfredini: Nano sized CeO2 powders obtained by flux method. Mater. Res. Bull. 34, 2159 (1999).

    Article  CAS  Google Scholar 

  26. L. Vayssieres, N. Beermann, S.E. Lindquist, and A. Hagfeldt: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron (III) oxides. Chem. Mater. 13, 233 (2001).

    Article  CAS  Google Scholar 

  27. A.B. Beleke, M. Mizuhata, and S. Deki: Diffuse reflectance FTIR spectroscopic study of interactions of a–Al2O3/molten NaNO3 coexisting systems. Phys. Chem. Chem. Phys. 5, 2089 (2003).

    Article  CAS  Google Scholar 

  28. M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo: Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous Meso-porous Mater. 37, 81 (2000).

    Article  CAS  Google Scholar 

  29. P. Afanasiev: Molten salt synthesis of nitrate-exchanged magnesium and aluminum sodalites. Chem. Mater. 13, 459 (2001).

    Article  CAS  Google Scholar 

  30. K.H. Yoon, Y.S. Cho, and D.H. Kang: Review: Molten salt synthesis of lead-based relaxors. J. Mater Sci. 33, 2977 (1998).

    Article  CAS  Google Scholar 

  31. D. Knaack, M.E.P. Goad, M. Aiolova, C. Rey, A. Tofighi, P. Chakravarthy, and D.D. Lee, Resorbable calcium phosphate bone substitute, J. Biomed. Mater. Res. 43, 399 (Appl. Biomater, 1998).

    CAS  Google Scholar 

  32. A.C. Tas: Synthesis of biomimetic Ca-hydroxyapatite powders at 37 °C in synthetic body fluids. Biomaterials. 21, 1429 (2000).

    Article  CAS  Google Scholar 

  33. K.D. Rogers and P. Daniels: An x-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23, 2577 (2002).

    Article  CAS  Google Scholar 

  34. H.B. Yin, T. Yamamoto, Y. Wada, and S. Yanagida: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. 83, 66 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cuneyt Tas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalota, S., Tas, A.C. & Bhaduri, S.B. Microwave-assisted synthesis of calcium phosphate nanowhiskers. Journal of Materials Research 19, 1876–1881 (2004). https://doi.org/10.1557/JMR.2004.0230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0230

Navigation