Skip to main content
Log in

High-performance bulk Ti-Cu-Ni-Sn-Ta nanocomposites based on a dendrite-eutectic microstructure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using a Ti–Cu–Ni–Sn–Ta alloy as an example, we demonstrate a strategy for the in situ formation of nanocomposite microstructures that can lead to simultaneous high strength and ductility. Our approach employs copper mold casting for the production of bulk alloys from the melt, and the solidification microstructure is designed to be composed of micrometer-sized ductile dendrites uniformly distributed inside a matrix of nanoscale eutectic reaction products. The nanostructured matrix is achieved at a relatively deep eutectic, which facilitates the formation of an ultrafine eutectic microstructure over a range of cooling rates. The multi-component recipe stabilizes a ductile solid solution as the toughening phase and helps to reduce the eutectic spacing down to nanoscale. The multi-phase microstructure (including phase distributions, morphologies, and interfaces) has been examined in detaul using transmission electron microscopy (TEM) and high-resolution TEM. The metastable eutectic reaction and the nanoscale spacing achieved are explauned using thermodynamic and solidification modeling. The benefits expected from the microstructure design are illustrated using the high strength and large plasticity observed in mechanical property tests. Our nanocomposite design strategy is expected to be applicable to many alloy systems and constitutes another example of tauloring the microstructure on nanoscale for extraordinary properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Dieter: Mechanical Metallurgy, 3rd edition (McGraw-Hill, Boston, MA, 1986), p. 212.

    Google Scholar 

  2. L.E. Mccandlish, B.H. Kear, and B.K. Kim: Chemical-processing of nanophase WC-Co composite powders. Mater. Sci. Technol. 6, 953 (1990).

    Article  CAS  Google Scholar 

  3. L. He and E. Ma: Full-density nanocrystalline Fe–29Al–2Cr intermetallic consolidated from mechanically milled powders. J. Mater. Res. 11, 72 (1996).

    Article  CAS  Google Scholar 

  4. K. Lu, J.T. Wang, and W.D. Wei: A new method for synthesizing nanocrystalline alloys. J. Appl. Phys. 69, 522 (1991).

    Article  CAS  Google Scholar 

  5. K. Lu: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mat. Sci. Eng. R 16, 161 (1996).

    Article  Google Scholar 

  6. C.C. Koch: Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruct. Mater. 9, 13 (1997).

    Article  CAS  Google Scholar 

  7. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32, 2335 (2001).

    Article  Google Scholar 

  8. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses contauning in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  9. U. Kühn, J. Eckert, N. Mattern, and L. Schultz: ZrNbCuNiAl bulk metallic glass matrix composites contauning dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 (2002).

    Article  Google Scholar 

  10. H. Ma, J. Xu, and E. Ma: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).

    Article  CAS  Google Scholar 

  11. C. Fan, R.T. Ott, and T.C. Hufnagel: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).

    Article  CAS  Google Scholar 

  12. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  13. Y.M. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  14. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  15. E.A. Brandes and G.B. Brook: (Smithells Metals Reference Book. Oxford, Butterworth-Heinemann, Oxford, U.K., 1998), pp. 6–9.

  16. K.C. Hari Kumar, I. Ansara, P. Wollants, and L. Delaey: Thermodynamic optimization of the Cu-Ti system. Z. Metall. 87, 666 (1996).

    CAS  Google Scholar 

  17. W. Kurz and D.J. Fisher: Dendrite growth in eutectic alloys: The couple zone. Interna. Met. Rev. 5–6, 177 (1979).

    Google Scholar 

  18. R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz: Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans. JIM 43, 1670 (2002).

    Article  CAS  Google Scholar 

  19. E.R. Thompson and F.D. Lemkey: Unidirectional solidification of Co–Cr–C monovariant eutectic alloys. Met. Trans. 1, 2799 (1970).

    CAS  Google Scholar 

  20. R.S. Barclay, H.W. Kerr, and P. Niessen: Off-eutectic composite solidification and properties in Al–Ni and Al–Co alloys. J. Mater. Sci. 6, 1168 (1971).

    Article  CAS  Google Scholar 

  21. R. Trivedi, J.T. Mason, J.D. Verhoeven, and W. Kurz: Eutectic spacing selection in Lead–based alloy systems. Met. Trans. A 22, 2523 (1991).

    Article  Google Scholar 

  22. J.A. Juarez-Islas and H. Jones: Conditions for growth of extended Al-rich Al–Mn alloy solid solutions and Al-Al6Mn eutectic during rapid solidification. Acta Metall. 35, 499 (1987).

    Article  Google Scholar 

  23. M.H. Burden and H. Jones: Determination of cooling rate in splatcooling from scale of microstructure. J. Inst. Metals 98, 249 (1970).

    CAS  Google Scholar 

  24. K.A. Jackson and J.D. Hunt: Lamellar and rod eutectic growth. Trans. auME 236, 1129 (1966).

    CAS  Google Scholar 

  25. . Fundamentals of Solidification, 4th edition, edited by W. Kurz and D.J. Fisher IV (Trans Tech, Zurich, Switzerland, 1998).

  26. H. Jones: Rapid Solidification of Metal and Alloys. (The Institution of Metallurgists, London, Monograph No. 8, 1982).

    Google Scholar 

  27. J.M. Manero, F.J. Gil, and J.A. Planell: Deformation mechanisms of Ti-6Al-4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. Acta Mater. 48, 3353 (2000).

    Article  CAS  Google Scholar 

  28. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  29. E. Ma: Nanocrystalline materials—Controlling plastic instability. Nat. Mater. 2, 7 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Sui.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dau, Q.L., Sun, B.B., Sui, M.L. et al. High-performance bulk Ti-Cu-Ni-Sn-Ta nanocomposites based on a dendrite-eutectic microstructure. Journal of Materials Research 19, 2557–2566 (2004). https://doi.org/10.1557/JMR.2004.0332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0332

Navigation