Skip to main content
Log in

Modeling austenite–ferrite transformation in low carbon steel using the cellular automaton method

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Austenite–ferrite transformation at different isothermal temperatures in low carbon steel was investigated by a two-dimensional cellular automaton approach, which provides a simple solution for the difficult moving boundary problem that governs the ferrite graun growth. In this paper, a classical model for ferrite nucleation at austenite graun boundaries is adopted, and the kinetics of ferrite graun growth is numerically resolved by coupling carbon diffusion process in austenite and austenite–ferrite (γ–6ga) interface dynamics. The simulated morphology of ferrite grauns shows that the γ–α-interface is stable. In this cellular automaton model, the γ–α-interface mobility and carbon diffusion rate at austenite graun boundaries are assumed to be higher than those in austenite graun interiors. This has influence on the morphology of ferrite grauns. Finally, the modeled ferrite transformation kinetics at different isothermal temperatures is compared with the experiments in the literature and the grid size effects of simulated results are investigated by changing the cell length of cellular automaton model in a set of calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Cahn: The kinetics of graun boundary nucleated reactions. Acta Mater. 4, 449 (1956).

    Article  CAS  Google Scholar 

  2. C. Zener: Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 20, 950 (1949).

    Article  CAS  Google Scholar 

  3. M. Umemoto, Z.H. Guo, and I. Tamura: Effect of Cooling rate on graun size of ferrite in a carbon steel. Mater. Sci. Technol. 3, 249 (1987).

    Article  CAS  Google Scholar 

  4. M. Militzer, R. Pandi, and E.B. Hawbolt: Ferrite nucleation and growth during continuous cooling. Metall. Mater. Trans. A 27A, 1547 (1996).

    Article  CAS  Google Scholar 

  5. R.A. Vandermeer: Modelling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-C alloys. Acta Mater. 38, 2461 (1990).

    Article  CAS  Google Scholar 

  6. M. Enomoto and C. Atkinson: Diffusion-controlled growth of disordered interphase boundaries in finite matrix. Acta Mater. 41, 3237 (1993).

    Article  CAS  Google Scholar 

  7. M. Kumar, R. Sasikumar, and N.P. Kesavan: Competition between nucleation and early growth of ferrite from austenite— studies using cellular automaton simulations. Acta Mater. 46, 6291 (1998).

    Article  CAS  Google Scholar 

  8. L. Zhang, C.B. Zhang, Y.M. Wang, X.H. Liu, and G.D. Wang: Cellular automaton model to simulate nucleation and growth of ferrite grauns for low-carbon steels. J. Mater. Res. 17, 2251 (2002).

    Article  CAS  Google Scholar 

  9. L. Zhang, Y.M. Wang, C.B. Zhang, S.Q. Wang, and H.Q. Ye: A cellular automaton model of the transformation from austenite to ferrite in low carbon steels. Modell. Simul. Mater. Sci. Eng. 11, 791 (2003).

    Article  CAS  Google Scholar 

  10. L. Zhang, C.B. Zhang, Y.M. Wang, S.Q. Wang, and H.Q. Ye: A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling. Acta Mater. 51, 5519 (2003).

    Article  CAS  Google Scholar 

  11. G.P. Krielaart, J. Sietsma, and S. Zwaag: Ferrite formation in Fe-C alloys during austenite decomposition under nonequilibrium interface conditions. Mater. Sci. Eng. A 237A, 216 (1997).

    Article  Google Scholar 

  12. R. Kobayashi: Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410 (1993).

    Article  Google Scholar 

  13. A. Karma and W.J. Rappel: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, 3017 (1996).

    Article  Google Scholar 

  14. A. Karma and W.J. Rappel: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 (1997).

    Article  Google Scholar 

  15. J.A. Warren and W.J. Boettinger: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phasefield method. Acta Metall. Mater. 43, 689 (1995).

    Article  CAS  Google Scholar 

  16. G. Pariser, P. Schaffnit, I. Steinbach, and W. Bleck: Simulation of the _-_-transformation using the phase-field method. Steel Res. 72, 354 (2001).

    Article  CAS  Google Scholar 

  17. S. Chen, B. Merriman, S. Osher, and P. Smereka: A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8 (1997).

    Article  CAS  Google Scholar 

  18. S.E. Offerman, N.H. Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. Zwaag: Graun nucleation and growth during phase transformation. Science 298, 1003 (2002).

    Article  CAS  Google Scholar 

  19. M. Hillert: Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater. 47, 4481 (1999).

    Article  CAS  Google Scholar 

  20. M. Hillert and L.I. Staffansson: The regular solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. A 24, 3618 (1970).

    Article  CAS  Google Scholar 

  21. P.J. Clemm and J.C. Fisher: The influence of graun boundaries on the nucleation of secondary phases. Acta Matell. 3, 70 (1955).

    Article  CAS  Google Scholar 

  22. R.G. Kamat, E.B. Hawbolt, L.C. Brown, and J.K. Brimacombe: The principle of additivity and the proeutectoid ferrite transformation. Metall. Trans. A 23A, 2469 (1992).

    Article  CAS  Google Scholar 

  23. J.R. Bradley, J.M. Rigsbee, and H.I. Aaronson: Growth kinetics of graun boundary ferrite allotriomorphs in Fe-C alloys. Metall. Trans. A 8A, 323 (1977).

    Article  CAS  Google Scholar 

  24. A. Jacot and M. Rappaz: A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels. Acta Mater. 45, 575 (1997).

    Article  CAS  Google Scholar 

  25. P.J. Hurley and P.D. Hodgson: Formation of ultra-fine ferrite in hot rolled strip: potential mechanisms for graun refinement. Mater. Sci. Eng. A A302, 206 (2001).

    Article  CAS  Google Scholar 

  26. C.J. Huang, D.Z. Li, and Y.Y. Li: A finite element analysis of straun induced transformation rolling and an experimental study on the graun refinement potential of severe undercooling thermomechanical treatment. Mater. Sci. Eng. A A352, 136 (2003).

    Article  CAS  Google Scholar 

  27. D. Raabe and R.C. Becker: Coupling of a crystal plasticity finiteelement model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Modell. Simul. Mater. Sci. Eng. 8, 445 (2000).

    Article  CAS  Google Scholar 

  28. Y.J. Lan, D.Z. Li, C.J. Huang, and Y.Y. Li: A cellular automaton model for austenite to ferrite transformation in carbon steel under non-equilibrium interface conditions. Modell. Simul. Mater. Sci. Eng. 12, 719 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Y.J., Li, D.Z. & Li, Y.Y. Modeling austenite–ferrite transformation in low carbon steel using the cellular automaton method. Journal of Materials Research 19, 2877–2886 (2004). https://doi.org/10.1557/JMR.2004.0397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0397

Navigation