Skip to main content
Log in

Stresses during micromolding of metals at elevated temperatures: pilot experiments and a simple model

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Lithographie, Galvanoformung, Abformung (LIGA) technique is important for making metal-based high-aspect-ratio microscale structures (HARMS) and microdevices derived from metal-based HARMS. Recently, molding replication of HARMS made of Pb, Zn, and Al has been demonstrated, advancing LIGA technology from the state where only polymer-based HARMS could be replicated by molding. This demonstration offers a potential means for economical fabrication of a wide variety of metal-based microdevices. Micromolding of a metal requires heating the metal to be molded to a significant fraction of its melting temperature. At high temperatures, the strength of the mold insert itself will typically decrease. The insert strength thus places a limit on the range of materials that can be molded. In this paper, micromolding and tensile experiments on Pb were carried out. A simple mechanics model of the micromolding process was developed. This model relates the stresses on the insert during micromolding primarily to the yield strength of the molded metal and frictional tractions on the sides of the insert. Reasonable agreement was obtained between the Pb experiments and the model predictions. Ramifications for other material systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Huang, W. Wang, M.C. Murphy, K. Lian, and Z.G. Ling: LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump. Microsystem Technol. 6, 235 (2000).

    Article  Google Scholar 

  2. R. Kondo, S. Takimoto, K. Suzuki, and S. Sugiyama: High aspect ratio electrostatic micro actuators using LIGA process. Microsystem Technol. 6, 218 (2000).

    Article  Google Scholar 

  3. J.D. Williams and W. Wang: Microfabrication of an electromagnetic power micro-relay using SU-8 based UV-LIGA technology. Microsystem Technol. (2005, in press).

    Google Scholar 

  4. C. Harris, K. Kelly, T. Wang, A. McCandless, and S. Motakef: Fabrication, modeling, and testing of micro-cross-flow heat exchangers. JMEMS 11, 726 (2002).

    CAS  Google Scholar 

  5. C. Friedrich, P. Coane, J. Goettert, and N. Gopinathin: Precision of micromilled x-ray masks and exposures. Microsystem Technol. 4, 21 (1997).

    Article  Google Scholar 

  6. H. Lowe and W. Ehrfeld: State-of-the-art in microreaction technology: Concepts, manufacturing and applications. Electrochim. Acta 44, 3679 (1999).

    Article  CAS  Google Scholar 

  7. M. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, 2000).

    Google Scholar 

  8. Y. Zhuang and E.J. Podlaha: NiCoFe ternary alloy deposition - I. An experimental kinetic study. J. Electrochem. Soc. 147, 2231 (2000).

    Article  CAS  Google Scholar 

  9. E.W. Becker, W. Ehrfeld, D. Munchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H.J. Michel, and V.R. Siemens: Production of separation-nozzle systems for uranium enrichment by a combination of x-ray-lithography and galvanoplastics. Naturwissenschaften 69, 520 (1982).

    Article  Google Scholar 

  10. M. Heckele, W. Bacher, and K.D. Muller: Hot embossing—The molding technique for plastic microstructures. Microsystem Technol. 4, 122 (1998).

    Article  Google Scholar 

  11. V. Piotter, K. Mueller, K. Plewa, R. Ruprecht, and J. Hausselt: Performance and simulation of thermoplastic micro injection molding. Microsystem Technol. 8, 387 (2002).

    Article  CAS  Google Scholar 

  12. D.P. Adams, M.J. Vasile, G. Benavides, and A.N. Campbell: Micromilling of metal alloys with focused ion beam-fabricated tools. Precis. Eng. 25, 107 (2001).

    Article  Google Scholar 

  13. G.L. Benavides, L.F. Bieg, M.P. Saavedra, and E.A. Bryce: High aspect ratio meso-scale parts enabled by wire micro-EDM. Microsystem Technol. 8, 395 (2002).

    Article  CAS  Google Scholar 

  14. K. Takahata, N. Shibaike, and H. Guckel: High-aspect-ratio WCCo microstructure produced by the combination of LIGA and micro-EDM. Microsystem Technol. 6, 175 (2000).

    Article  Google Scholar 

  15. R. Ruprecht, T. Gietzelt, K. Muller, V. Piotter, and J. Hausselt: Injection molding of microstructured components from plastics, metals and ceramics. Microsystem Technol. 8, 351 (2002).

    Article  CAS  Google Scholar 

  16. R. Ruprecht, T. Benzler, T. Hanemann, K. Muller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. Wollmer, and J. Hausselt: Various replication techniques for manufacturing three-dimensional metal microstructures. Microsystem Technol. 4, 28 (1997).

    Article  Google Scholar 

  17. Z.Y. Liu, N.H. Loh, S.B. Tor, Y. Murakoshi, R. Maeda, K.A. Khor, and T. Shimidzu: Injection molding of 316L stainless steel microstructures. Microsystem Technol. 9, 507 (2003).

    Article  CAS  Google Scholar 

  18. D.M. Cao, D. Guidry, W.J. Meng, and K.W. Kelly: Molding of Pb and Zn with microscale mold inserts. Microsystem Technol. 9, 559 (2003).

    Article  CAS  Google Scholar 

  19. D.M. Cao, T. Wang, B. Feng, W.J. Meng, and K.W. Kelly: Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications. Thin Solid Films 398, 553 (2001).

    Article  Google Scholar 

  20. D.M. Cao, W.J. Meng, S.J. Simko, G.L. Doll, T. Wang, and K.W. Kelly: Conformal deposition of Ti-C:H coatings over highaspect- ratio micro-scale structures and tribological characteristics. Thin Solid Films 429, 46 (2003).

    Article  CAS  Google Scholar 

  21. D.M. Cao and W.J. Meng: Microscale compression molding of Al with surface engineered LIGA inserts. Microsystem Technol. 10, 662 (2004).

    Article  CAS  Google Scholar 

  22. H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, and G. Dirras: Measured mechanical properties of LIGA Ni structures. Sens. Actuators A 103, 59 (2003).

    Article  CAS  Google Scholar 

  23. D.M. Cao, W.J. Meng, and K.W. Kelly: High-temperature instrumented microscale compression molding of Pb. Microsystem Technol. 10, 323 (2004).

    Article  CAS  Google Scholar 

  24. Binary Alloy Phase Diagrams, edited by T.B. Massalski (American Society of Metals, Metals Park, OH, 1986).

    Google Scholar 

  25. ABAQUS Standard User’s Manual, Revision 6.4 (Hibbit, Karlsson and Sorenson Inc., Pawtucket, RI, 2003).

    Google Scholar 

  26. ANSYS Advanced Analysis Techniques, Revision 8.0 (ANSYS Inc., Cannonsburg, PA, 2003).

    Google Scholar 

  27. G.B. Sinclair and W.J. Meng: A summary of hardness dependence on ball indentation, Report MA 1-04, Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA (2004).

    Google Scholar 

  28. H.R. Hertz: On the contact of elastic solids (in German). J. Reine Angew. Math. 92, 156 (1882).

    Google Scholar 

  29. D.A. Spence: Hertz contact problem with finite friction. J. Elasticity 5, 297 (1975).

    Article  Google Scholar 

  30. M.T. Huber: On the contact of elastic solids (in German). Annl. Phys. 14, 153 (1904).

    Article  Google Scholar 

  31. G.B. Sinclair, P.S. Follansbee, and K.L. Johnson: Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere 2: Results. Int. J. Solids Struct. 21, 865 (1985).

    Article  Google Scholar 

  32. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).

    Google Scholar 

  33. L.E. Samuels and T.O. Mulhearn: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).

    Article  Google Scholar 

  34. P.S. Follansbee and G.B. Sinclair: Quasi-static normal indentation of an elasto plastic half-space by a rigid sphere 1: Analysis. Int. J. Solids Struct. 20, 81 (1984).

    Article  Google Scholar 

  35. C.H. Lee and S. Kobayashi: Analysis of ball indentation. Int. J. Mech. Sci. 14, 417 (1972).

    Article  Google Scholar 

  36. I.N. Sneddon: Fourier Transforms (McGraw-Hill, New York, 1951).

    Google Scholar 

  37. Smithells Metals Reference Book, 7th ed, edited by E.A. Brandes and G.B. Brook (Butterworth-Heinemann, Oxford, U.K., 1998).

    Google Scholar 

  38. J. Boussinesq: On the application of potentials to study the equilibrium stresses and deflections in elastic solids (in French) (Gauthier-Villars, Paris, France, 1885).

    Google Scholar 

  39. D.A. Spence: Self similar solution to adhesive contact problems with incremental loading. Proc. R. Soc. A 305, 55 (1968).

    Google Scholar 

  40. I.Y. Steuermann: Contact Problem of the Theory of Elasticity (Gostekhteoretizdat, Moscow, U.S.S.R., 1949).

    Google Scholar 

  41. M. Ciavarella, D.A. Hills, and G. Monno: The influence of rounded edges on indentation by a flat punch. Proc. Instn. Mech. Eng. 212C, 319 (1998).

    Google Scholar 

  42. A.R. Zak: Stresses in the vicinity of boundary discontinuities in bodies of revolution. J. Appl. Mech. 31, 150 (1964).

    Article  Google Scholar 

  43. M.A. Sadowsky: Two-dimensional problems of elasticity theory (in German). Z. Angew. Math. Mech. 8, 107 (1928).

    Article  Google Scholar 

  44. M.T. Huber and S. Fuchs: Stresses for the contact of two elastic cylinders (in German). Physikalische Z. 15, 298 (1914).

    Google Scholar 

  45. American Society for Testing and Materials, Standard Test Methods for Tension Testing of Metallic Materials E8 (2001).

    Google Scholar 

  46. CRC Handbook of Chemistry and Physics, edited by D.R. Lide (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, W.J., Cao, D.M. & Sinclair, G.B. Stresses during micromolding of metals at elevated temperatures: pilot experiments and a simple model. Journal of Materials Research 20, 161–175 (2005). https://doi.org/10.1557/JMR.2005.0026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0026

Navigation