Skip to main content
Log in

Gel-melting method for preparation of organically modified siloxane low-melting glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Softening or melting behavior of the organically-modified siloxane hybrid gels and glasses in the system of RSiO3/2 and R2SiO2/2 (R: methyl and phenyl) has been investigated to obtain a new family of low-melting glasses. The RSiO3/2 and RSiO3/2-R2SiO2/2 gels showed softening temperatures around 50–100 °C. The softening temperature of RSiO3/2 single-component glasses, which were obtained by melting the corresponding gels at a temperature above the softening temperature, increased by heat-treatment at 200 °C, and finally showed no softening behavior. On the other hand, in the PhSiO3/2-Ph2SiO2/2 binary glasses, the softening temperatures showed a tendency to saturate after longer heat treatment over 200 h. These facts indicate that the present organically modified siloxane system will be a potential candidate for the low-melting glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Tick: Water durable glasses with ultra low melting temperatures. Phys. Chem. Glasses 25, 149 (1984).

    CAS  Google Scholar 

  2. J. Cheng, and Z. Jin: New lead-halide-based glass-forming systems. J. Non-Cryst. Solids 184, 213 (1995).

    Article  CAS  Google Scholar 

  3. H.S. Liu, P.Y. Shih, and T.S. Chin: Low melting PbO–ZnO–P2O5 glasses. Phys. Chem. Glasses 37, 227 (1996).

    CAS  Google Scholar 

  4. Y. Sato, M. Tatsumisago, and T. Minami: Fragility and local structure of low melting SnCl2–P2O5 glasses. Phys. Chem. Glasses 38, 285 (1997).

    CAS  Google Scholar 

  5. A.B. Seddon: Chalcohalides: Glass-forming systems and progress in application of percolation theory. J. Non-Cryst. Solids 213–214, 22 (1997).

    Article  Google Scholar 

  6. T. Takaishi, M. Takahashi, J. Jin, T. Uchino, and T. Yoko: Structural study on PhO–SiO2 glasses by x-ray and neutron diffraction and 29Si MAS NMR measurements. J. Am. Ceram. Soc. (accepted for publication).

  7. M. Mizuno, M. Takahashi, T. Takaishi, and T. Yoko: Leaching of lead and connectivity of plumbate networks in lead silicate glasses. J. Am. Ceram. Soc. (submitted).

  8. S.K. Kurtz and T.T. Perry: A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798 (1968).

    Article  CAS  Google Scholar 

  9. C. Sanchez, B. Lebeau, F. Chaput, and J-P. Boilot: Optical properties of functional hybrid organic-inorganic nanocomposites. Adv. Mater. 15, 1969 (2003).

    Article  CAS  Google Scholar 

  10. H. Kamioka, H. Hiramatsu, H. Ohta, M. Hirano, K. Ueda, T. Kamiya, and H. Hosono: Third-order optical nonlinearity originating from room-temperature exciton in layered compounds LaCuOS and LaCuOSe. Appl. Phys. Lett. 84, 879 (2004).

    Article  CAS  Google Scholar 

  11. W.R. Tompkin, R.W. Boyd, D.W. Hall, and P.A. Tick: Nonlinearoptical properties of lead-tin fluorophosphates glass containing acridine dyes. J. Opt. Soc. Am. B 4, 1030 (1987).

    Article  CAS  Google Scholar 

  12. Y. Orihara, M. Uo, H. Inoue, A. Makishima, and T. Tani: Preparation and spectroscopy of lead-tin fluorophosphates glass doped with TPPS and TPPS-Sn. Ber. Bunsenges. Phys. Chem. 100, 1582 (1996).

    Article  CAS  Google Scholar 

  13. F.I. Hurwitz, L. Hyatt, J. Gorecki, and L. D’Amore: Silsesquioxane as precursors to ceramic composites. Ceram. Eng. Sci. Proc. 8, 732 (1987).

    Article  CAS  Google Scholar 

  14. H. Ishida, R. Shick, and F. Hurwitz: The rheology of phenylpropyl silsesquioxane in the fiber spinning regime. Polym. Mater. Sci. Eng. 63, 882 (1990).

    CAS  Google Scholar 

  15. A. Matsuda, T. Sasaki, K. Hasegawa, M. Tatsumisago, and T. Minami: Thermal softening behavior of poly(phenylsilsesqioxane) and poly(benzylsilsesquioxane) particles. J. Ceram. Soc. Jpn. 108, 830 (2000).

    Article  CAS  Google Scholar 

  16. A. Matsuda, T. Sasaki, K. Hasegawa, M. Tatsumisago, and T. Minami: Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by the sol-gel process. J. Am. Ceram. Soc. 84, 775 (2001).

    Article  CAS  Google Scholar 

  17. C.Y. Wang, Z.X. Shen, and J.Z. Zheng: Thermal cure study of a low-k methyl silsesquioxane for intermetal dielectric application by FTIR spectroscopy. Appl. Spectrosc. 54, 209 (2000).

    Article  CAS  Google Scholar 

  18. K. Kobayashi: Low polarization and low temperature reflow of inorganic borophosphosilicate glasses formed from organic sources. Mater. Sci. Eng. B98, 181 (2003).

    Article  CAS  Google Scholar 

  19. Y. Haruvy, I. Gilath, M. Maniewictz, and N. Eisenberg: Sol-gel prepared glass for refractive and diffractive micro-optical elements and arrays. J. Sol-Gel Sci. Technol. 13, 547 (1998).

    Article  CAS  Google Scholar 

  20. A.H.O. Karkkainen, J.M. Tamkin, J.D. Rogers, D.R. Neal, O.E. Hormi, G.E. Jabbour, J.T. Rantala, and M.R. Descour: Direct photolithographic deforming of organomodified siloxane films for micro-opticics fabrication. Appl. Opt. 41, 3988 (2002).

    Article  CAS  Google Scholar 

  21. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J-U. Park, L. Frohlich, R. Buestrich, M. Popall, U. Steppel, P. Dannberg, C. Wachter, and A. Brauer: Inorganic-organic hybrid materials for application in optical devices. Thin Solid Films 442, 194 (2003).

    Article  CAS  Google Scholar 

  22. K. Tadanaga, K. Ueyama, T. Sueki, A. Matsuda, and T. Minami: Micropatterning of inorganic-organic hybrid coating films from various tri-functional silicon alkoxides with a double bond in their organic components. J. Sol-Gel Sci. Technol. 26, 431 (2003).

    Article  CAS  Google Scholar 

  23. K. Kitaoka, N. Matsuoka, J. Si, T. Mitsuyu, and K. Hirao: Optical poling of phenyl-silica hybrid thin films doped with azo-dye chromophore. Jpn. J. Appl. Phys. 38, L1029 (1999).

    Article  Google Scholar 

  24. C. Sanchez, B. Lebeau, F. Ribot, and M. In: Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. J. Sol- Gel Sci. Technol. 19, 31 (2000).

    Article  CAS  Google Scholar 

  25. S. Han, Z. Li, S. Ji, D. Dai, R. Zhang, C. Zhu, and C. Wang: Nonlinear optical polymer films based on sol-gel derived polysilsesquioxane with pendant chromophoric subunits embedded in sizematched pores. J. Sol-Gel Sci. Technol. 18, 137 (2000).

    Article  CAS  Google Scholar 

  26. H. Niida, M. Takahashi, T. Uchino, and T. Yoko: Preparation and structure of organic-inorganic hybrid precursors for new type lowmelting glasses. J. Non-Cryst. Solids 306, 292 (2002).

    Article  CAS  Google Scholar 

  27. H. Niida, M. Takahashi, T. Uchino, and T. Yoko: Spontaneous reduction of europium ions below 250 °C in organic-inorganic hybrid low-melting phosphate glasses. J. Mater. Res. 18, 1 (2003).

    Article  CAS  Google Scholar 

  28. J.Y. Choi, C.H. Kim, and D.K. Kim: Formation and characterization of monodisperse, spherical organo-silica powders from organoalkoxysilane- water system. J. Am. Ceram. Soc. 81, 1184 (1998).

    Article  CAS  Google Scholar 

  29. M.J. van Bommel, T.N.M. Bernards, and A.H. Boonstra: The influence of the addition of alkyl-substituted ethoxysilane on the hydrolysis-condensation process of TEOS. J. Non-Cryst. Solids 128, 231 (1991).

    Article  Google Scholar 

  30. S.Y. Kim, D.G. Choi, and S.M. Yang: Rheological analysis of the gelation behavior of tetraethylorthosilane/vinyltriethoxysilane hybrid solutions. Kor. J. Chem. Eng. 19, 190 (2002).

    Article  CAS  Google Scholar 

  31. H.A. Barnes, J.F. Hutton, and K. Walters: An Introduction to Rheology (Elsevier, Amsterdam, Holland, 1989), p. 37

    Google Scholar 

  32. Koza-Rheology, edited by K. Osaki, and T. Masuda (Society of Rheology Nihon Reorojil, Kyoto, Japan, (1992), Chap. 3, (in Japanese).

    Google Scholar 

  33. H. Kakiuchida, M. Takahashi, H. Masai, Y. Tokuda, and T. Yoko: Relationship between viscoelastic properties and structure of organic- inorganic hybrid glass and supercooled liquid consisting of R4-mSiOm/2 units, in Proceedings of XX International Conference on Glasses, edited by T. Yoko (XXICG Organizing Committee, Kyoto, Japan, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Masai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masai, H., Takahashi, M., Tokuda, Y. et al. Gel-melting method for preparation of organically modified siloxane low-melting glasses. Journal of Materials Research 20, 1234–1241 (2005). https://doi.org/10.1557/JMR.2005.0151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0151

Navigation