Skip to main content
Log in

Nanocrystalline GdFeO3 via the gel-combustion process

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nanocrystalline GdFeO3 powder was synthesized by a combustion technique, using glycine as the fuel and the corresponding metal nitrates as oxidants. Five different molar ratios of fuel-to-oxidant were chosen to study the effect of fuel content on the phase formation and the powder properties. The powders after calcination were characterized by x-ray diffraction (XRD) and crystallite sizes calculated by x-ray line broadening. The crystallite sizes for the phase pure products after calcination at 600 °C were in the range 40-65 nm. The transmission electron microscopy observations clearly highlight the pronounced crystallinity for the propellant chemistry samples. The nature of the agglomerates was investigated by light scattering studies. The lattice thermal expansion behavior was also studied by high-temperature XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Beecroft and C.K. Ober: Nanocomposite materials for optical applications. Chem. Mater. 9, 1302 (1997).

    Article  CAS  Google Scholar 

  2. W.H. Rhodes: Agglomerate and particle-size effects on sintering yttria-stabilized zirconia, J. Am. Ceram. Soc. 64, 19 (1981).

    Article  CAS  Google Scholar 

  3. H. Weller: Colloidal semiconductors Q-particles: Chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl. 32, 41 (1993).

    Article  Google Scholar 

  4. R.W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu and R. Gronsky: Synthesis, characterization, and properties of nanophase TiO2. J. Mater. Res. 3, 1367 (1988).

    Article  CAS  Google Scholar 

  5. H. Hahn, J. Logas and R.S. Averback: Sintering characteristics of nanocrystalline TiO2. J. Mater. Res. 5, 609 (1990).

    Article  CAS  Google Scholar 

  6. G.L. Bauerle and K. Nobe: Ind. Eng. Chem. Prod. Rd. 13, 185 (1974).

    Article  CAS  Google Scholar 

  7. A.H. Bobeck: Properties and device applications of magnetic domains in orthoferrites. Bell System Technol. J. 46, 1901 (1967).

    Article  Google Scholar 

  8. S. Mathur, H. Shen, N. Lecerf, A. Kjekshus, H. Fjellvag and G. Goya: Nanocrystalline orthoferrite GdFeO3 from a novel heterobimetallic precursor. Adv. Mater. 14, 1405 (2002).

    Article  CAS  Google Scholar 

  9. S. Mathur, M. Veith, R. Rapalavicuite, H. Shen, G. Goya, W. Filho and T. Berquo: Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior. Chem. Mater. 16, 1906 (2004).

    Article  CAS  Google Scholar 

  10. D.S. Schmool, N. Keller, M. Guyot, R. Krishnan and M. Tessier: Evidence of very high coercive fields in orthoferrite phases of PLD grown thin films. J. Magn. Magn. Mater. 195, 291 (1999).

    Article  CAS  Google Scholar 

  11. J.J. Kingsley, K. Suresh and K.C. Patil: Combustion synthesis of fine-particle metal aluminates. J. Mater. Sci. 25, 1305 (1990).

    Article  CAS  Google Scholar 

  12. R.L. Pederson, L.A. Chick, and G.J. Exarhos: Method of making metal oxide ceramic powders by using a combustible amino acid compound, U.S. Patent No. 5 114 702 (May 19, 1992).

    Google Scholar 

  13. S. Bhaduri, S.B. Bhaduri and E. Zhou: Auto ignition synthesis and consolidation of Al2O3-ZrO2 nano/nano composite powders. J. Mater. Res. 13, 156 (1998).

    Article  CAS  Google Scholar 

  14. S.V. Chavan and A.K. Tyagi: Preparation and characterization of Sr0.09Ce0.91O1.91, SrCeO3, Sr2CeO4 by glycine-nitrate combustion: A crucial role of oxidant-to-fuel ratio. J. Mater. Res. 19, 3181 (2004).

    Article  CAS  Google Scholar 

  15. S.S. Manoharan and K.C. Patil: Combustion synthesis of metal chromite powders. J. Am. Ceram. Soc. 75, 1012 (1992).

    Article  CAS  Google Scholar 

  16. S.R. Jain, K.C. Adiga and V.R. Pai Verneker: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71 (1981).

    Article  CAS  Google Scholar 

  17. R.D. Purohit, B.P. Sharma, K.T. Pillai and A.K. Tyagi: Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36, 2711 (2001).

    Article  CAS  Google Scholar 

  18. S.V. Chavan, K.T. Pillai, and A.K. Tyagi: Combustion synthesis of nanocrystalline yttria: Tailoring of powder properties. (unpublished).

  19. D. Grier and G. McCarthy: JCPDS-47-0067, North Dakota State University, Fargo, ND (1993).

  20. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos: Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6 (1990).

    Article  CAS  Google Scholar 

  21. S.V. Chavan and A.K. Tyagi: Combustion synthesis of nanocrystalline yttria-doped ceria. J. Mater. Res. 19, 474 (2004).

    Article  CAS  Google Scholar 

  22. R.D. Purohit, S. Saha, and A.K. Tyagi: Nanostructured ceria powders through citrate-nitrate combustion. (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, S.V., Tyagi, A.K. Nanocrystalline GdFeO3 via the gel-combustion process. Journal of Materials Research 20, 2654–2659 (2005). https://doi.org/10.1557/JMR.2005.0337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0337

Navigation