Skip to main content
Log in

Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultrathin lanthanide (Nd, Pr, Eu, Sm) oxide films with functional dielectric properties down to 3.3 nm thickness were deposited by aqueous chemical solution deposition (CSD) onto hydrophilic SiO2/Si substrates. Precursor solutions were prepared from the oxides via an intermediate, solid Ln(III)citrate. A film heat treatment scheme was derived from thermogravimetric analysis of the precursor gels, showing complete decomposition by 600 °C. Crystalline phase formation in the films depended on the lanthanide, annealing temperature, and citric acid content in the precursor. Through variation of the precursor concentration and number of deposited layers, thickness series of uniform films were obtained down to ∼3 nm. The film uniformity was demonstrated both by atomic force microscopy and cross-section transmission electron microscopy. The lanthanide oxide films possessed good dielectric properties. It was concluded that aqueous CSD allows deposition of uniform ultrathin films and may be useful for the evaluation of new high-k candidate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. R.W. Schwartz, T. Schneller, and R. Waser: Chemical solution deposition of electronic oxide films. C.R. Chim. 7, 433 (2004).

    Article  CAS  Google Scholar 

  2. M. Alexe and D. Hesse: Self-assembled nanoscale ferroelectrics. J. Mater. Sci. 41, 1 (2006).

    Article  CAS  Google Scholar 

  3. M. Alexe, C. Harnagea, and D. Hesse: Non-conventional microand nanopatterning techniques for electroceramics. J. Electroceram. 12, 69 (2004).

    Article  CAS  Google Scholar 

  4. Q. Zhang, C.P. Shaw, Z. Huang, and R.W. Whatmore: Sol-gel derived lead zirconate titanate thick films and their improved pyroelectric properties. Integr. Ferroelectr. 64, 207 (2004).

    Article  CAS  Google Scholar 

  5. R. Waser, T. Schneller, S. Hoffmann-Eifert, and P. Ehrhart: Advanced chemical deposition techniques—from research to production. Integr. Ferroelectr. 36, 3 (2001).

    Article  CAS  Google Scholar 

  6. J. Ricote, S. Holgado, P. Ramos, and M.L. Calzada: Piezoelectric ultrathin lead titanate films prepared by deposition of aquo-diol solutions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 2299 (2006).

    Article  Google Scholar 

  7. A.M. Doyle, G. Rupprechter, N. Pfander, R. Schlogl, C.E.A. Kirschhock, J.A. Martens, and H.J. Freund: Ultra-thin zeolite films prepared by spin-coating - Silicalite-1 precursor solutions. Chem. Phys. Lett. 382, 404 (2003).

    Article  CAS  Google Scholar 

  8. S.M. Chang and R.A. Doong: ZrO2 thin films with controllable morphology and thickness by spin-coated sol-gel method. Thin Solid Films 489, 17 (2005).

    Article  CAS  Google Scholar 

  9. Y. Aoki and T. Kunitake: Solution-based fabrication of high-k gate dielectrics for next-generation metal-oxide semiconductor transistors. Adv. Mater. 16, 118 (2004).

    Article  CAS  Google Scholar 

  10. A.I. Kingon, J.P. Maria, and S.K. Streiffer: Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032 (2000).

    Article  CAS  Google Scholar 

  11. H. Wong and H. Iwai: On the scaling issues and high-kappa replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83, 1867 (2006).

    Article  CAS  Google Scholar 

  12. G.D. Wilk, R.M. Wallace, and J.M. Anthony: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  13. D.G. Schlom and J.H. Haeni: A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull. 27, 198 (2002).

    Article  CAS  Google Scholar 

  14. J. Robertson: High-dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).

    Article  CAS  Google Scholar 

  15. M. Wagner, T. Heeg, J. Schubert, C. Zhao, O. Richard, M. Caymax, V.V. Afanas’ev, and S. Mantl: Preparation and characterization of rare earth scandates as alternative gate oxide materials. Solid-State Electron. 50, 58 (2006).

    Article  CAS  Google Scholar 

  16. H.M. Christen, G.E. Jellison, I. Ohkubo, S. Huang, M.E. Reeves, E. Cicerrella, J.L. Freeouf, Y. Jia, and D.G. Schlom: Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior. Appl. Phys. Lett. 88, 262906 (2006).

    Article  CAS  Google Scholar 

  17. M. Leskela, K. Kukli, and M. Ritala: Rare-earth oxide thin films for gate dielectrics in microelectronics. J. Alloys Compd. 418, 27 (2006).

    Article  CAS  Google Scholar 

  18. O. Engström, B. Raeissi, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, and K. Cherkaoui: Navigation aids in the search for future high-k dielectrics: Physical and electrical trends. Solid-State Electron. 51, 622 (2007).

    Article  CAS  Google Scholar 

  19. T.Y. Tseng and H.S. Nalwa: Aqueous solution based synthesis of nanostructured metal oxides, in Handbook of Nanoceramics and Their Based Nanodevices, edited by H. Van den Rul, M.K. Van Bael, A. Hardy, K. Van Werde, and J. Mullens (2006, in press).

    Google Scholar 

  20. R.W. Schwartz: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).

    Article  CAS  Google Scholar 

  21. M.K. Van Bael, D. Nelis, A. Hardy, D. Mondelaers, K. Van Werde, J. D’Haen, G. Vanhoyland, H. Van den Rul, J. Mullens, L.C. Van Poucke, F. Frederix, and D.J. Wouters: Aqueous chemical solution deposition of ferroelectric thin films. Integr. Ferroelectr. 45, 113 (2002).

    Article  Google Scholar 

  22. S. Van Elshocht, A. Hardy, S. De Gendt, C. Adelmann, P.K. Baumann, D.P. Brunco, M. Caymax, T. Conard, P. Delugas, P. Lehnen, O. Richard, E. Rohr, D. Shamiryan, R. Vos, T. Witters, P. Zimmerman, M.K. Van Bael, J. Mullens, M. Meuris, and M. Heyns: Alternative Gate Dielectric Materials. ECS2006 (Cancun, Mexico, 2006).

    Book  Google Scholar 

  23. G. Vanhoyland, J. Pagnaer, J. D’Haen, S. Mullens, and J. Mullens: Characterization and structural study of lanthanum citrate trihydrate La(C6H5O7)(H2O)(2)•H2O. J. Solid State Chem. 178, 166 (2005).

    Article  CAS  Google Scholar 

  24. J. Kragten: Atlas of Metal-Ligand Equilibria in Aqueous Solution (Chichester, Horwood, 1978).

    Google Scholar 

  25. N.B. Colthup, L.H. Daly, and S.E. Wiberley: Introduction to Infrared and Raman Spectroscopy, 3rd ed. (Academic Press, San Diego, 1990).

    Google Scholar 

  26. M. Kakihana, M. Tada, M. Shiro, V. Petrykin, M. Osada, and Y. Nakamura: Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4].H2O. Inorg. Chem. 40, 891 (2001).

    Article  CAS  Google Scholar 

  27. Y. Narendar: Regulating oxide crystallization from Pb, Mg, Nbcarboxylate gels. PhD Thesis, Pennsylvania State University, University Park, Pennsylvania, 1996.

    Google Scholar 

  28. A. Hardy, G. Vanhoyland, E. Geuzens, M.K. Van Bael, J. Mullens, L.C. Van Poucke, and J. D’Haen: Gel structure, gel decomposition and phase formation mechanisms in the aqueous solution-gel route to lanthanum substituted bismuth titanate. J. Sol.-Gel Sci. Technol. 33, 283 (2005).

    Article  CAS  Google Scholar 

  29. JCPDS Nos. 34–0392; 41–1089; 48–0056; 42–1121. International Center for Diffraction Data: Newton Square, PA, 2001.

    Google Scholar 

  30. J. Pétry, W. Vandervorst, and X. Blasco: Effect of N2 anneal on thin HfO2 layers studied by conductive atomic force microscopy. Microelectron. Eng. 72, 174 (2004).

    Article  CAS  Google Scholar 

  31. A. Kosola, J. Paivasaari, M. Putkonen, and L. Niinisto: Neodymium oxide and neodymium aluminate thin films by atomic layer deposition. Thin Solid Films 479, 152 (2005).

    Article  CAS  Google Scholar 

  32. C. Zhao, G. Roebben, H. Bender, E. Young, S. Haukka, M. Houssa, M. Naili, S. De Gendt, M. Heyns, and O. Van Der Biest: In situ crystallisation in ZrO2 thin films during high temperature x-ray diffraction. Microelectron. Reliab. 41, 995 (2001).

    Article  Google Scholar 

  33. K.T. Miller, F.F. Lange, and D.B. Marshall: The instability of polycrystalline thin-films—Experiment and theory. J. Mater. Res. 5, 151 (1990).

    Article  CAS  Google Scholar 

  34. A. Seifert, A. Vojta, J.S. Speck, and F.F. Lange: Microstructural instability in single-crystal thin films. J. Mater. Res. 11, 1470 (1996).

    Article  CAS  Google Scholar 

  35. I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, and M. Alexe: Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl. Phys. Lett. 83, 2211 (2003).

    Article  CAS  Google Scholar 

  36. A. Roelofs, T. Schneller, K. Szot, and R. Waser: Towards the limit of ferroelectric nanosized grains. Nanotechnology 14, 250 (2003).

    Article  CAS  Google Scholar 

  37. A. Olbrich, B. Ebersberger, C. Boit, J. Vancea, and H. Hoffmann: A new AFM-based tool for testing dielectric quality and reliability on a nanometer scale. Microelectron. Reliab. 39, 941 (1999).

    Article  Google Scholar 

  38. S. Van Elshocht, A. Hardy, T. Witters, C. Adelmann, M. Caymax, T. Conard, S. De Gendt, A. Franquet, M. Heyns, M.K. Van Bael, and J. Mullens: Aqueous chemical solution deposition—Fast screening method for alternative high-k materials applied to Nd2O3. Electrochem. Solid State Lett. 10, G15 (2007).

    Article  CAS  Google Scholar 

  39. S. Van Elshocht, A. Hardy, C. Adelmann, M. Caymax, T. Conard, A. Franquet, O. Richard, M.K. Van Bael, J. Mullens, and S. De Gendt: Screening of High-k Layers in MIS and MIM Capacitors Using Aqueous Chemical Solution Deposition. ECS2007 (Washington, DC, 2007).

    Google Scholar 

  40. J.R. Hauser and K. Ahmed: Int. Conf. on Characterization and Metrology for ULSI Technology (AIP, New York, 1998). p. 235.

    Book  Google Scholar 

  41. M.D. Song and S.W. Rhee: Direct liquid injection metal organic chemical vapor deposition of Nd2O3 thin films using Tris(2,2,6,6- tetramethyl-3,5-heptanedionato) neodymium. Thin Solid Films 492, 19 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. G. Vanhoyland for the XRD work on the lanthanide citrates. M.K. Van Bael and A. Hardy are postdoctoral research fellows of the Research Foundation Flanders (FWO-Vlaanderen). This work is supported by the FWO research project G.0273.05. The research was partly performed in the framework of the projects 1.2.16/D2/841 and 1.2.14/PO/841 of the Objective 2 programme for Limburg (Belgium) of the European Regional Development Fund with title “Integrated Material Research for Development and Application in the Automotive Sector.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlies K. Van Bael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, A., Van Elshocht, S., D’Haen, J. et al. Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films. Journal of Materials Research 22, 3484–3493 (2007). https://doi.org/10.1557/JMR.2007.0433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0433

Navigation