Skip to main content
Log in

Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model for simulating stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron. Given an embedded atom (EAM) potential as input, energy barriers for diffusion are ascertained on the fly from the local environments of H atoms. To reduce computational cost, on-the-fly calculations are supplemented with precomputed strain-dependent energy barriers in defect-free parts of the crystal. These precomputed barriers, obtained with high-accuracy density functional theory calculations, are used to ascertain the veracity of the EAM barriers and correct them when necessary. Examples of bulk diffusion in crystals containing a screw dipole and vacancies are presented. Effective diffusivities obtained from KMC simulations are found to be in good agreement with theory. Our model provides an avenue for simulating the interaction of hydrogen with cracks, dislocations, grain boundaries, and other lattice defects, over extended time scales, albeit at atomistic length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1
TABLE II
TABLE III
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE IV
FIG. 7

Similar content being viewed by others

References

  1. J.P. Hirth: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11, 861 1980

    Article  Google Scholar 

  2. H.K. Birnbaum, P. Sofronis: Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191 1994

    Article  CAS  Google Scholar 

  3. Y. Katz, N. Tymiak, W.W. Gerberich: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies. Eng. Fract. Mech. 68, 619 2001

    Article  Google Scholar 

  4. A.R. Troiano: The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM 52, 54 1960

    Google Scholar 

  5. R.A. Oriani, P.H. Josephic: Equilibrium and kinetic studies of hydrogen-assisted cracking of steel. Acta Metall. 25, 979 1977

    Article  CAS  Google Scholar 

  6. R.A. Oriani: Hydrogen embrittlement of steels. Annu. Rev. Mater. Sci. 8, 327 1978

    Article  CAS  Google Scholar 

  7. C.D. Beacham: A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall. Trans. 3, 437 1972

    Google Scholar 

  8. I.M. Robertson: The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68, 671 2001

    Article  Google Scholar 

  9. D.G. Westlake: A generalized model for hydrogen embrittlement. Trans. ASM 62, 1000 1969

    CAS  Google Scholar 

  10. S. Gahr, M.L. Grossbeck, H.K. Birnbaum: Hydrogen embrittlement of Nb. 1. Macroscopic behavior at low-temperatures. Acta Metall. 25, 125 1977

    Article  CAS  Google Scholar 

  11. A.H. Cottrell, B.A. Bilby: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc., A62 49 1949

    Article  Google Scholar 

  12. Hydrogen in Metals I and II, Topics in Applied Physics, 28 and 29 edited by G. Alefeld and J. Völkl Springer Berlin and Heidelberg, Germany 1978

  13. R. Kirchheim: Hydrogen solubility and diffusivity in defective and amorphous metals. Prog. Mater. Sci. 32, 261 1988

    Article  CAS  Google Scholar 

  14. S.M. Myers, M.I. Baskes, H.K. Birnbaum, J.W. Corbett, G.G. DeLeo, S.K. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, M.J. Stavola: Hydrogen interactions with defects in crystalline solids. Rev. Mod. Phys. 64, 559 1992

    Article  CAS  Google Scholar 

  15. R.A. Oriani: The physical and metallurgical aspects of hydrogen in metals in ICCF4, Fourth International Conference on Cold Fusion, 1993

  16. Hydrogen in Metals III, Topics in Applied Physics, 73 edited by H. Wipf Springer Berlin and Heidelberg, Germany 1997

  17. Y. Fukai: The Metal–Hydrogen System Springer Series in Materials Science 2nd ed. Springer Berlin and Heidelberg, Germany 2005

    Book  Google Scholar 

  18. D.E. Jiang, E.A. Carter: Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles. Surf. Sci. 547, 85 2003

    Article  CAS  Google Scholar 

  19. D.E. Jiang, E.A. Carter: Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys. Rev. B 70, 064102 2004

    Article  CAS  Google Scholar 

  20. H.J. Grabke, E. Riecke: Absorption and diffusion of hydrogen in steels. Mater. Technol. 34, 331 2000

    CAS  Google Scholar 

  21. A. McNabb, P.K. Foster: A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans. AIME 227, 618 1963

    CAS  Google Scholar 

  22. R.A. Oriani: The diffusion and trapping of hydrogen in steel. Acta Metall. 18, 147 1970

    Article  CAS  Google Scholar 

  23. A.J. Kumnick, H.H. Johnson: Deep trapping states for hydrogen in deformed iron. Acta Metall. 28, 33 1980

    Article  CAS  Google Scholar 

  24. R. Kirchheim: Monte carlo simulations of interstitial diffusion and trapping—i. One type of traps and dislocations. Acta Metall. 35, 271 1987

    Article  CAS  Google Scholar 

  25. C.A. Wert, R.C. Frank: Trapping of interstitials in metals. Ann. Rev. Mater. Sci. 13, 139 1983

    Article  CAS  Google Scholar 

  26. A.H.M. Krom, A. Bakker: Hydrogen trapping models in steels. Metall. Mater. Trans. B 31B, 1475 2000

    Article  CAS  Google Scholar 

  27. R. Kirchheim: Interaction of hydrogen with external stress fields. Acta Metall. 34, 37 1986

    Article  CAS  Google Scholar 

  28. P. Sofronis, H.K. Birnbaum: Mechanics of the hydrogen-dislocation-impurity interactions–i. Increasing shear modulus. J. Mech. Phys. Solids 43, 49 1995

    Article  Google Scholar 

  29. C.A. Wert: Trapping of hydrogen in metals in Hydrogen in Metals II, Topics in Applied Physics, 29 edited by G. Alefeld and J. Völkl Springer Berlin and Heidelberg, Germany 1978 305

    Article  CAS  Google Scholar 

  30. A. van der Wen, G. Ceder: The thermodynamics of decohesion. Acta Mater. 52, 1223 2004

    Article  CAS  Google Scholar 

  31. D.E. Jiang, E.A. Carter: First principles assessment of ideal fracture energies of materials with mobile impurities: Implications for hydrogen embrittlement of metals. Acta Mater. 52, 4801 2004

    Article  CAS  Google Scholar 

  32. O. Nguyen, M. Ortiz: Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior. J. Mech. Phys. Solids 50, 1727 2002

    Article  Google Scholar 

  33. R.L. Hayes, M. Ortiz, E.A. Carter: Universal binding-energy relations for crystals that account for surface relaxation. Phys. Rev. B 69, 172104 2004

    Article  CAS  Google Scholar 

  34. S. Serebrinsky, E.A. Carter, M. Ortiz: A quantum-mechanically informed continuum model of hydrogen embrittlement. J. Mech. Phys. Solids 52, 2403 2004

    Article  CAS  Google Scholar 

  35. W.W. Gerberich, T. Livne, X-F. Chen, M. Kaczorowski: Crack growth from internal hydrogen—Temperature and microstructural effects in 4030 steel. Metall. Trans. A 19, 1319 1988

    Article  Google Scholar 

  36. S.L. Lee, D.J. Unger: A decohesion model of hydrogen assisted cracking. Eng. Fract. Mech. 31, 647 1988

    Article  Google Scholar 

  37. Y. Liang, P. Sofronis, N. Aravas: On the effect of hydrogen on plastic instabilities in metals. Acta Mater. 51, 2717 2003

    Article  CAS  Google Scholar 

  38. S. Nedelcu, P. Kizler: Molecular dynamics simulation of hydrogen–edge dislocation interaction in bcc iron. Phys. Status Solidi A, Appl. Res. 193, 26 2002

    Article  CAS  Google Scholar 

  39. M. Wen, S. Fukuyama, K. Yokogawa: Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767 2003

    Article  CAS  Google Scholar 

  40. A. Kimura, H. Kimura: Hydrogen embrittlement in high purity iron single crystals. Mater. Sci. Eng. 77, 75 1986

    Article  CAS  Google Scholar 

  41. H. Kimura, H. Matsui: Mechanism of hydrogen–induced softening and hardening in iron. Scr. Metall. 21, 319 1987

    Article  CAS  Google Scholar 

  42. P. Sofronis, R.M. McMeeking: Numerical analysis of hydrogen transport near a blunting crack tip. J. Mech. Phys. Solids 37, 317 1989

    Article  Google Scholar 

  43. J. Lufrano, P. Sofronis: Enhanced hydrogen concentrations ahead of rounded notches and cracks—Competition between plastic strain and hydrostatic stress. Acta Mater. 46, 1519 1998

    Article  CAS  Google Scholar 

  44. A. Taha, P. Sofronis: A micromechanics approach to the study of hydrogen transport and embrittlement. Eng. Fract. Mech. 68, 803 2001

    Article  Google Scholar 

  45. D. Delafosse, T. Magnin: Hydrogen induced plasticity in stress-corrosion cracking of engineering systems. Eng. Fract. Mech. 68, 693 2001

    Article  Google Scholar 

  46. M. Wen, X-J. Xu, S. Fukuyama, K. Yokogawa: Embedded atom method functions for the body centered cubic iron and hydrogen. J. Mater. Res. 16, 3496 2001

    Article  CAS  Google Scholar 

  47. M.S. Daw, M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 1983

    Article  CAS  Google Scholar 

  48. M.S. Daw, M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 1984

    Article  CAS  Google Scholar 

  49. M.S. Daw, S.M. Foiles, M.I. Baskes: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9, 251 1993

    Article  CAS  Google Scholar 

  50. P. Hohenberg, W. Kohn: Inhomogeneous electron gas. Phys. Rev. B 136, 864 1964

    Article  Google Scholar 

  51. W. Kohn, L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 1965

    Article  Google Scholar 

  52. J.P. Perdew, K. Burke, M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 1996

    Article  CAS  Google Scholar 

  53. G. Kresse, J. Hafner: Ab initio molecular dynamics for open shell transition metals. Phys. Rev. B 48, 13115 1993

    Article  CAS  Google Scholar 

  54. G. Kresse, J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15 1996

    Article  CAS  Google Scholar 

  55. G. Kresse, J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 1996

    Article  CAS  Google Scholar 

  56. P.E. Blochl: Projector augmented wave method. Phys. Rev. B 50, 17953 1994

    CAS  Google Scholar 

  57. G. Kresse, D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 1999

    Article  CAS  Google Scholar 

  58. M. Methfessel, A.T. Paxton: High precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 1989

    Article  CAS  Google Scholar 

  59. G. Henkelman, B. Uberuaga, H. Jónsson: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 2000

    Article  CAS  Google Scholar 

  60. H. Jónsson, G. Mills, K.W. Jacobsen: Nudged elastic band method for finding minimum energy paths of transitions in Classical and Quantum Dynamics in Condensed Phase Simulations edited by B.J. Berne, G. Ciccotti, and D.F. Coker, World Scientific Singapore 1998 385

    Chapter  Google Scholar 

  61. H. Grabert, H.R. Schober: Theory of tunneling and diffusion of light interstitials in metals in Hydrogen in Metals III 73, Topics in Applied Physics edited by H. Wipf Springer-Verlag Berlin and Heidelberg, Germany 1997 5

    Article  CAS  Google Scholar 

  62. C.P. Flynn, A.M. Stoneham: Quantum theory of diffusion with application to light interstitials in metals. Phys. Rev. B 1, 3966 1970

    Article  Google Scholar 

  63. D.F. Watson: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24, 167 1981

    Article  Google Scholar 

  64. G.H. Vineyard: Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121 1957

    Article  CAS  Google Scholar 

  65. F.M. Bulnes, V.D. Pereyra, J.L. Ricardo: Collective surface diffusion: n-fold way kinetic Monte Carlo simulation. Phys. Rev. E 58, 86 1998

    Article  CAS  Google Scholar 

  66. Y. Tateyama, T. Ohno: Stability and clusterization of hydrogen–vacancy complexes in α–Fe: An ab initio study. Phys. Rev. B 67, 174105 2003

    Article  CAS  Google Scholar 

  67. S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1 1995 URL. http://lammps.sandia.gov

    Article  CAS  Google Scholar 

  68. D.A. Porter, K.E. Easterling: Transformations in Metals and Alloys 2nd ed. CRC Press Boca Raton, FL 2001

    Google Scholar 

  69. R.A. Johnson, D.J. Oh: Analytic embedded atom method model for bcc metals. J. Mater. Res. 4, 1195 1989

    Article  CAS  Google Scholar 

  70. D.C. Rapaport: Art of Molecular Dynamics Simulation Cambridge University Press West Nyack, NY 2004

    Book  Google Scholar 

  71. D.A. Faux, D.K. Ross: Tracer and chemical diffusion of hydrogen in bcc metals. J. Phys. C: Solid State 20, 1441 1987

    Article  CAS  Google Scholar 

  72. J.P. Hirth, J. Lothe: Theory of Dislocations, 2nd ed John Wiley & Sons, Inc. New York 1982 2nd ed

    Google Scholar 

  73. S.L. Frederiksen, K.W. Jacobsen: Density-functional theory studies of screw dislocation core structures in bcc metals. Philos. Mag. 83, 365 2003

    Article  CAS  Google Scholar 

  74. C. Domain, G. Monnet: Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys. Rev. Lett. 95, 215506 2005

    Article  CAS  Google Scholar 

  75. F. Besenbacher, S.M. Myers, P. Nordlander, J.K. Nørskov: Multiple hydrogen occupancy of vacancies in Fe. J. Appl. Phys. 61, 1788 1987

    Article  CAS  Google Scholar 

  76. P. Nordlander, J.K. Nørskov, F. Besenbacher, S.M. Myers: Multiple deuterium occupancy of vacancies in Pd and related metals. Phys. Rev. B 40, 1990 1989

    Article  CAS  Google Scholar 

  77. A. Ramasubramaniam, E.A. Carter: unpublished 2008

Download references

Acknowledgments

We thank Prof. Weinan E for useful discussions. Computational resources were provided by the Arctic Region Supercomputing Center and the Maui High Performance Computing center. This work was supported by a grant from the Office of Naval Research (awarded to E.A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.A. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasubramaniam, A., Itakura, M., Ortiz, M. et al. Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations. Journal of Materials Research 23, 2757–2773 (2008). https://doi.org/10.1557/JMR.2008.0340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0340

Navigation