Skip to main content
Log in

High Refractive Index Inorganic-Organic Hybrid Materials for Photonic Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

High refractive index materials are attractive for many photonic elements. For example, 3D photonic bandgap (PBG) materials have been proposed as the basis of many devices. In order to create complete 3D PBGs, materials enabling high refractive index contrast are needed. We here report on novel high refractive index hybrid polymers. They were synthesized by hydrolysis/polycondensation reactions of organo-alkoxysilanes and Ti alkoxide precursors, resulting in organically modified inorganic-oxidic pre-polymer resins. These can be organically cross-linked by one- or two-photon polymerization (2PP). The latter method enables the writing of arbitrary 3D structures. The introduction of Ti into the inorganic-oxidic network accounts for an increase in the material’s refractive index, which could be varied between 1.62 and 1.8. Optical properties such as refractive index and absorption losses were determined on an exemplary material system in the lower refractive index range. The influence of the processing parameters on the degree of organic polymerization, and the refractive index of these novel high index materials was investigated in particular. 3D photonic crystal structures were written for the first time in a high-refractive index hybrid polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Toader, and S. John, Science 292, 1133 (2001).

    Article  CAS  Google Scholar 

  2. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).

    Article  CAS  Google Scholar 

  3. J. D. Joannopoulos, R. D. Meade, J. N. Winn : Photonic Crystals, (Princeton University Press, New Jersey, 1995).

    Google Scholar 

  4. P. Henzi, D.G. Rabus, K. Bade, U. Wallrabe, and J. Mohr, Proc SPIE 5454, 64 (2004).

    Article  Google Scholar 

  5. C. Sanchez, B. Julián, P. Belleville, M. Popall, J. Mater. Chem. 15, 3559 (2005).

    Article  CAS  Google Scholar 

  6. R. Houbertz, H. Wolter, P. Dannberg, J. Serbin, and S. Uhlig, Proc. SPIE 6126, 612605 (2006).

    Article  Google Scholar 

  7. V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leising, Proc. SPIE 6476, 64760P (2007).

  8. U. Haas, A. Haase, V. Satzinger, H. Pichler, G. Leising, G. Jakopic, B. Stadlober, R. Houbertz, G. Domann, and A. Schmidt, Phys. Rev. B 73, 235339 (2006).

    Article  Google Scholar 

  9. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wöchter, A. Bröuer, Thin Solid Films 442, 194 (2003).

    Article  CAS  Google Scholar 

  10. P. Judeinstein, and C. Sanchez, J. Mater. Chem. 6, 511 (1996).

    Article  CAS  Google Scholar 

  11. C. Sanchez, and F. Ribot, New J. Chem. 18, 1007 (1994).

    CAS  Google Scholar 

  12. R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, Phys. Stat. Sol. (a) 204, 3662 (2007).

    Article  CAS  Google Scholar 

  13. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, Opt. Lett. 28, 301 (2003).

    Article  CAS  Google Scholar 

  14. J. Serbin, A. Ovsianikov, and B. Chichkov, Opt. Express 12, 5221 (2004).

    Article  CAS  Google Scholar 

  15. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, J. Sol-Gel Sci. Technol. 20, 181 (2001).

    Article  CAS  Google Scholar 

  16. P. Declerck, R. Houbertz, G. Jacopic, J. Sol-Gel Sci. Technol. (submitted).

  17. H. Schmidt, B. Seiferling in Better Ceramics Through Chemistry II, edited by C. J. Brincker, D. E. Clark, D. R. Ulrich, (Mater. Res. Soc. Proc. 73, Palo Alto, CA, 1986) pp. 739–750.

    Google Scholar 

  18. M. Trejo-Valdez, P. Jenouvrier, J. Fick, M. Langlet, J. Mater. Sci. 39, 2801 (2004).

    Article  CAS  Google Scholar 

  19. X. Luo, C. Zha, B. Luther-Davies, J. Non-Cryst. Solids 351, 29 (2005).

    Article  CAS  Google Scholar 

  20. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, Nature 386, 143 (1997).

    Article  CAS  Google Scholar 

  21. C. Croutxé-Barghorn, O. Soppera, L. Simonin, D. J. Lougnot, Adv. Mater. Opt. Electron. 10, 25 (2000).

    Article  Google Scholar 

  22. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000).

    Article  CAS  Google Scholar 

  23. M. Langlet, Thin Solid Films 472, 253 (2005).

    Article  CAS  Google Scholar 

  24. X. Luo, C. Zha, and B. Luther-Davies, J. Non-Cryst. Solids 351, 29 (2005).

    Article  CAS  Google Scholar 

  25. C. Pianelli, J. Devaux, S. Bebelman, G. Leloup, J. Biomed. Mater. Res. 48, 675 (1999).

    Article  CAS  Google Scholar 

  26. C.-H. Chang, A. Mar, A. Tiefenthaler, D. Wostratzky in Handbook of Coatings Additives vol. 2, edited by L. J. Calbo (M. Dekker Inc, 1992), pp. 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Declerck, P., Houbertz, R., Jakopic, G. et al. High Refractive Index Inorganic-Organic Hybrid Materials for Photonic Applications. MRS Online Proceedings Library 1007, 102 (2007). https://doi.org/10.1557/PROC-1007-S01-02

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1007-S01-02

Navigation