Skip to main content
Log in

Exploring Back Contact Technology to Increase CdS/CdTe Solar Cell Efficiency

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The primary routes for increasing CdS/CdTe solar cell efficiency involve increasing free carrier density, reducing bulk and interface recombination, and/or reducing back contact barrier height. This paper focuses on the role of the back contact barrier in increasing cell efficiency. Measurement of barrier height and back surface recombination are outlined and three CdTe/MX/M back contact prototypes, each with particular strengths, are discussed to bring out important issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sites and J. Pan, E-MRS (06), Nice. Thin Solid Films (07), in press.

  2. A. Fahrenbruch, 4th World Conf. Photovoltaic Energy Conversion, Hawaii (06) p.376.

  3. P. V. Meyers, Solar Cells 27, 91 (89).

  4. U. Reislöhner, M. Hädrich, et al., E-MRS (06). Thin Solid Films (07), in press.

  5. W. K. Metzger, M. J. Romero, P. Dippo, and M. Young, 4th World Conf. Photovoltaic Energy Conv., Hawaii (06) p. 372.

  6. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet Thin Solid Films 480–1, 392 (05).

  7. A. Niemegeers and M. Burgelman, J. Appl. Phys., 81, 2881 (97).

  8. S. H. Demtsu and J. R. Sites, Thin Solid Films 510, 320 (06).

  9. G. Agostinelli, E. D. Dunlop, D. L. Bätzner, A. N. Tiwari, P. Nollet, M. Burgelman, and M. Köntges, 3rd World Conf. Photovoltaic Energy Conv., Osaka (03) p. 356.

  10. Some experimental J-V characteristics can be fitted precisely by J = Jo(V-Vo)2, where V is the applied bias and Jo and Vo are constants.

  11. G. Stollwerck and J. R. Sites, 13th European PV Solar Energy Conf., Nice, (95), p. 2020.

  12. B. E. McCandless and J. Phillips, J. Titus, 2nd World PVSEC Conf., Vienna, (98), p. 448.

  13. A. Klein, “Advances in Solid State Analysis,” 44, Springer (04) p. 13.

  14. A. Klein, F. Sauberlich, B. Späth, T. Schulmeyer, & D. Kraft, J. Mater. Sci. 42, 1890 (07).

  15. D. Schroder, “Semiconductor Material & Device Characterization,” Wiley (06) p. 526, 550.

  16. L. Kronik and Y. Shapira, Surf. Interface Anal. 31, 954 (01). Also, Schroder op cit. p. 404.

  17. V. Narayanamurti and M. Kozhenvnikov, Physics Reports 349, 447–514 (01).

  18. I. M. Dharmadasa, Prog. in Crystal Growth and Character. of Mat’ls. 36, 249–290 (98).

  19. A. E. Fowell, R. H. Williams et al., Semicond. Sci. Technol. 5, 346 (90).

  20. P. Nollet, M. Burgelman, S. Degrave, and J. Beier, Proc. 28th IEEE Photovoltaic Specialists Conf. (02). p. 704.

  21. J. Tousek, D. Kindl, J. Toušková, S. Dolhov, and A. Poruba, J. Appl. Phys. 89, 460 (01).

  22. M. A. Gonzalas et al., J. Phys. IV France 125 411 (05).

  23. P. Grunow and M. Kunst, J. Appl. Physics 77, 2767 (95).

  24. V. Mizeikis, K. Jarasiunas, N. Lovergine, and K. Kuroda, Thin Solid Films 364 186 (00).

  25. C-T. Lee and R. H. Bube, J. Appl. Phys. 54, 7041 (83).

  26. R. T. Tung, Materials Science and Engineering Reports 35, 1–138 (01).

  27. S. Gurumurthy, H. L. Bhat, and V. Kumar, Semicond. Sci. Technol. 14, 909 (99).

  28. I. Visoly-Fisher, A. Sitt, M. Wahab, and D. Cahen, ChemPhysChem, 6, 277 (05).

  29. D. Kraft, A. Thissen, J. Broetz, S. Flege, M. Campo, A. Klein, and W. Jaegermann, J. Appl. Phys. 94, 3589 (03).

  30. X. Wu, J. Zhou, Ath. Duda, Y. Yana, G. Teeter, S. Asher, W. K. Metzger, S. Demtsu, S.-H. Wei, R. Noufi, 17th E-PSEC (06), Munich. Thin Solid Films (07), in press.

  31. J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (93).

  32. S. S. Hegedus and B. E. McCandless, Solar Energy Materials and Solar Cells 88, 75 (05).

  33. B. S. Farag et al. Thin Solid Films 201, 231 (91) and . 247, 112 (94).

  34. M. Bruening et al. J. Am. Chem. Soc. 116, 2977 (1994).

    Article  Google Scholar 

  35. B. Späth et al., E-MRS (06), Nice. Thin Solid Films (07), in press.

  36. V. Viswanathan et al., Proc. 28th IEEE Photovoltaic Spec. Conf., (00) p. 587.

  37. N. Romeo, A. Bosio, and V. Canevari, Solar Energy 77, 795 (04).

  38. D. L Batzner et al., Thin Solid Films 451, 536 (04).

  39. K. Barri, M. Jayabal, H. Zhao, D. L. Morell, S. Asher, J. W. Pankow, M. R. Young, and C. S. Ferekides, Proc. 31st IEEE Photovoltaic Spec. Conf., (05) p. 287.

  40. D. Rioux, S. W. Niles, and H. Hochst, J. Appl. Phys. 73, 8381 (93).

  41. B. Späth, J. Fritsche, A. Klein, and W. Jaegermann,.Appl. Phys. Lett. 90, 62112 (07).

  42. K. Makhratchev, K. J. Price, X. Ma, D. A. Simmons, J. Drayton, K. Ludwig, A. Gupta, R. G. Bohn, A. D. Compaan, Proc. 28th IEEE Photovoltaic Spec. Conf., (00) p. 475.

  43. T. A. Gessert, S. Asher, S. Johnson, A. Duda, M. R. Young, and T. Moriarty, 4th World Conf. Photovoltaic Energy Conv., Hawaii (06) p. 432.

  44. J. Tang, D. Mao, T. R. Ohno, V. Kaydanov, and J. U. Trefny, Proc. 26th IEEE Photovoltaic Specialists Conf. (97). p. 439.

  45. J. L. Shaw et al., J. Vac. Sci. Technol. A6, 2752 (88).

  46. P. Sutter; E. Sutter, and T.R. Ohno, Applied Physics Letters; 84, 2100 (04).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrenbruch, A.L. Exploring Back Contact Technology to Increase CdS/CdTe Solar Cell Efficiency. MRS Online Proceedings Library 1012, 705 (2007). https://doi.org/10.1557/PROC-1012-Y07-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1012-Y07-05

Navigation